Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Design, analyze and implement the algorithm of computing Huffman code. Input: 26

ID: 3762988 • Letter: D

Question

Design, analyze and implement the algorithm of computing Huffman code. Input: 26 English characters (your can add some other characters, such as space, ",", ",") and their frequencies (the sum of the frequencies is 100). Output: Huffman codewords of each character. Build Huffman code tree In-order transversal the tree to get the codewords First encoding, and then, decoding a text file using the Huffman codewords (the output of the Task 1). Input: a text file consists of the characters in Task 1 Output: Encoded the text file and decoded it back. Requirements Design the algorithms for Task 1 and Task 2. Two data structures have to be used in the algorithm for Task 1. One is a priority queue Q. Each node in Q is the root of a binary tree which keeps Huffman codewords. Analyze the time complexity of each algorithm using O-notation. Note that the time complexity depends on the implementation of the data structures. Implement the algorithms using C#. A simple user interface has to be contained. That is, the user can input the set of characters and their frequencies, and output the Huffman code of each character. Also, they can encode and decode a text file. Submission Project description. Algorithms. Algorithm analysis. Experiment output. Code.

Explanation / Answer

#include <stdio.h>

#include <stdlib.h>

// This constant can be avoided by explicitly calculating height of Huffman Tree

#define MAX_TREE_HT 100

// A Huffman tree node

struct MinHeapNode

{

    char data; // One of the input characters

    unsigned freq; // Frequency of the character

    struct MinHeapNode *left, *right; // Left and right child of this node

};

// A Min Heap: Collection of min heap (or Hufmman tree) nodes

struct MinHeap

{

    unsigned size;    // Current size of min heap

    unsigned capacity;   // capacity of min heap

    struct MinHeapNode **array; // Attay of minheap node pointers

};

// A utility function allocate a new min heap node with given character

// and frequency of the character

struct MinHeapNode* newNode(char data, unsigned freq)

{

    struct MinHeapNode* temp =

          (struct MinHeapNode*) malloc(sizeof(struct MinHeapNode));

    temp->left = temp->right = NULL;

    temp->data = data;

    temp->freq = freq;

    return temp;

}

// A utility function to create a min heap of given capacity

struct MinHeap* createMinHeap(unsigned capacity)

{

    struct MinHeap* minHeap =

         (struct MinHeap*) malloc(sizeof(struct MinHeap));

    minHeap->size = 0; // current size is 0

    minHeap->capacity = capacity;

    minHeap->array =

     (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*));

    return minHeap;

}

// A utility function to swap two min heap nodes

void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)

{

    struct MinHeapNode* t = *a;

    *a = *b;

    *b = t;

}

// The standard minHeapify function.

void minHeapify(struct MinHeap* minHeap, int idx)

{

    int smallest = idx;

    int left = 2 * idx + 1;

    int right = 2 * idx + 2;

    if (left < minHeap->size &&

        minHeap->array[left]->freq < minHeap->array[smallest]->freq)

      smallest = left;

    if (right < minHeap->size &&

        minHeap->array[right]->freq < minHeap->array[smallest]->freq)

      smallest = right;

    if (smallest != idx)

    {

        swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);

        minHeapify(minHeap, smallest);

    }

}

// A utility function to check if size of heap is 1 or not

int isSizeOne(struct MinHeap* minHeap)

{

    return (minHeap->size == 1);

}

// A standard function to extract minimum value node from heap

struct MinHeapNode* extractMin(struct MinHeap* minHeap)

{

    struct MinHeapNode* temp = minHeap->array[0];

    minHeap->array[0] = minHeap->array[minHeap->size - 1];

    --minHeap->size;

    minHeapify(minHeap, 0);

    return temp;

}

// A utility function to insert a new node to Min Heap

void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode)

{

    ++minHeap->size;

    int i = minHeap->size - 1;

    while (i && minHeapNode->freq < minHeap->array[(i - 1)/2]->freq)

    {

        minHeap->array[i] = minHeap->array[(i - 1)/2];

        i = (i - 1)/2;

    }

    minHeap->array[i] = minHeapNode;

}

// A standard funvtion to build min heap

void buildMinHeap(struct MinHeap* minHeap)

{

    int n = minHeap->size - 1;

    int i;

    for (i = (n - 1) / 2; i >= 0; --i)

        minHeapify(minHeap, i);

}

// A utility function to print an array of size n

void printArr(int arr[], int n)

{

    int i;

    for (i = 0; i < n; ++i)

        printf("%d", arr[i]);

    printf(" ");

}

// Utility function to check if this node is leaf

int isLeaf(struct MinHeapNode* root)

{

    return !(root->left) && !(root->right) ;

}

// Creates a min heap of capacity equal to size and inserts all character of

// data[] in min heap. Initially size of min heap is equal to capacity

struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size)

{

    struct MinHeap* minHeap = createMinHeap(size);

    for (int i = 0; i < size; ++i)

        minHeap->array[i] = newNode(data[i], freq[i]);

    minHeap->size = size;

    buildMinHeap(minHeap);

    return minHeap;

}

// The main function that builds Huffman tree

struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size)

{

    struct MinHeapNode *left, *right, *top;

    // Step 1: Create a min heap of capacity equal to size. Initially, there are

    // modes equal to size.

    struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size);

    // Iterate while size of heap doesn't become 1

    while (!isSizeOne(minHeap))

    {

        // Step 2: Extract the two minimum freq items from min heap

        left = extractMin(minHeap);

        right = extractMin(minHeap);

        // Step 3: Create a new internal node with frequency equal to the

        // sum of the two nodes frequencies. Make the two extracted node as

        // left and right children of this new node. Add this node to the min heap

        // '$' is a special value for internal nodes, not used

        top = newNode('$', left->freq + right->freq);

        top->left = left;

        top->right = right;

        insertMinHeap(minHeap, top);

    }

    // Step 4: The remaining node is the root node and the tree is complete.

    return extractMin(minHeap);

}

// Prints huffman codes from the root of Huffman Tree. It uses arr[] to

// store codes

void printCodes(struct MinHeapNode* root, int arr[], int top)

{

    // Assign 0 to left edge and recur

    if (root->left)

    {

        arr[top] = 0;

        printCodes(root->left, arr, top + 1);

    }

    // Assign 1 to right edge and recur

    if (root->right)

    {

        arr[top] = 1;

        printCodes(root->right, arr, top + 1);

    }

    // If this is a leaf node, then it contains one of the input

    // characters, print the character and its code from arr[]

    if (isLeaf(root))

    {

        printf("%c: ", root->data);

        printArr(arr, top);

    }

}

// The main function that builds a Huffman Tree and print codes by traversing

// the built Huffman Tree

void HuffmanCodes(char data[], int freq[], int size)

{

   // Construct Huffman Tree

   struct MinHeapNode* root = buildHuffmanTree(data, freq, size);

   // Print Huffman codes using the Huffman tree built above

   int arr[MAX_TREE_HT], top = 0;

   printCodes(root, arr, top);

}

// Driver program to test above functions

int main()

{

    char arr[] = {'a', 'b', 'c', 'd', 'e', 'f'};

    int freq[] = {5, 9, 12, 13, 16, 45};

    int size = sizeof(arr)/sizeof(arr[0]);

    HuffmanCodes(arr, freq, size);

    return 0;

}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote