Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

How to print these methods in a separate main class? need the output to look lik

ID: 3790694 • Letter: H

Question

How to print these methods in a separate main class?

need the output to look like this:

Enter three integers whose GCD is to be found ->

Enter an integer n to find the nth Fibonacci number ->

Enter the base and exponent , an integer, of a power ->

Enter two positive integers 1 and j where i < j ->

gcd() =

fib() =

(a number ^ a number) = a number

There are ___ palindromic numbers between (a number) and (a number)

package recursiveauxiliarymath;


public class RecursiveAuxiliaryMath {

  
  

public static boolean recIsPalindrome(String num, int i, int j){
if(i>=j){
return true;
}
else{
if(num.charAt(i)!=num.charAt(j)){
return false;
}
else{
recIsPalindrome(num,i+1,j-1);
}
}
return true;
}
  
public static long recFibonacci(int n)

{
if (n<=2)
return 1;
else
{
long fib;
  
fib = recFibonacci(n - 1) + recFibonacci (n - 2);
return fib;
  
  
}
  
  
}
public static int recGCD(int a, int b)
  
{
if(b!=0){
return recGCD(b,b%a);
}
else{
return a;
}

  
  

}
  
  
  
  
public static double recPowInt (double a, int n)
  
{
if(n==1){
return a;
}
else{
return recPowInt(a*a,n-1);

}
}
}

Explanation / Answer

Hi, Please find my implementation.

Please let me know in case of any issue.

import java.util.Scanner;

public class RecursiveAuxiliaryMath {

  

   public static boolean recIsPalindrome(String num, int i, int j){

      

       if( i > j)

           return false;

       if( i == j) // one digit

           return true;

      

       if(num.charAt(i) == num.charAt(j)){

           if(i+1 == j) // only two digits

               return true;

          

           return recIsPalindrome(num, i+1, j-1);

       }else{

           return false;

       }

   }

  

   public static long recFibonacci(int n){

       if(n <= 2)

           return 1;

      

       else{

           long fib;

           fib = recFibonacci(n-1) + recFibonacci(n-2);

           return fib;

       }

   }

  

   public static int recGCD(int a, int b){

       if (a == 0)

      return b;

      return recGCD(b%a, a);

   }

  

   public static double recPowInt(double a, int n){

      

       double temp;

      if( n == 0)

   return 1;

      temp = recPowInt(a, n/2);

      if (n%2 == 0)

      return temp*temp;

      else

      {

      if(n > 0)

      return a*temp*temp;

      else

      return (temp*temp)/a;

      }

   }

  

   public static void main(String[] args) {

      

       Scanner sc= new Scanner(System.in);

      

       System.out.print("Enter three digits whose GCD is to be found -> ");

       int a1 = sc.nextInt();

       int a2 = sc.nextInt();

       int a3 = sc.nextInt();

      

       int gcd = Math.abs(recGCD(a1, a2));

       gcd = Math.abs(recGCD(gcd, a3));

      

       System.out.print("Enter an integer n to ind the nth Fibonacci number -> ");

       int a4 = sc.nextInt();

      

       long fib = recFibonacci(a4);

      

       System.out.print("Enter the base and exponenet, an integer, f a power -> ");

       double a5 = sc.nextDouble();

       int a6 = sc.nextInt();

      

       double pow = recPowInt(a5, a6);

      

       System.out.print("Enter two positive numbers i and jhere i < j -> ");

       int a7 = sc.nextInt();

       int a8 = sc.nextInt();

      

       int count = 0;

       for(int k = a7; k<=a8; k++){

           String num = Integer.toString(k);

           if(recIsPalindrome(num, 0, num.length()-1)){

               count++;

           }

       }

      

      

       System.out.println();

      

       System.out.println("gcd("+a1+", "+a2+", "+a3+") = "+gcd);

       System.out.println("fib("+a4+") = "+fib);

       System.out.println(a5+"^"+a6+" = "+pow);

       System.out.println("There are "+count+" palindrome numbers beween "+a7+" and "+a8);

   }

  

}

/*

Sample run:

Enter three digits whose GCD is to be found -> 120 90 -75

Enter an integer n to ind the nth Fibonacci number -> 30

Enter the base and exponenet, an integer, f a power -> -4.5 -3

Enter two positive numbers i and jhere i < j -> 1 1000

gcd(120, 90, -75) = 15

fib(30) = 832040

-4.5^-3 = -0.010973936899862825

There are 108 palindrome numbers beween 1 and 1000

*/

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote