Tasks: • Copy doublyLinkedList.h to doublyLinkedList-descending.h • In doublyLin
ID: 3858916 • Letter: T
Question
Tasks:
• Copy doublyLinkedList.h to doublyLinkedList-descending.h
• In doublyLinkedList-descending.h, implement the copyList function (you can use copyList function of linked list in Chapter 5 as reference).
• In doublyLinkedList-descending.h, change the implementation of the doubly linked list so that items are in descending order. Hint: modifications are localized in three methods: search(), insert(), and deleteNode().
doublyLinkedList-descending.h
#include <iostream>
#include <cassert>
using namespace std;
//Definition of the node
template <class Type>
struct nodeType
{
Type info;
nodeType<Type> *next;
nodeType<Type> *back;
};
template <class Type>
class doublyLinkedList
{
public:
const doublyLinkedList<Type>& operator=
(const doublyLinkedList<Type> &);
//Overload the assignment operator.
void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;
bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise returns false.
void destroy();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL; last = NULL; count = 0;
void print() const;
//Function to output the info contained in each node.
void reversePrint() const;
//Function to output the info contained in each node
//in reverse order.
int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.
Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the first element of the list is returned.
Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the last element of the list is returned.
bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in the
// list, otherwise returns false.
void insert(const Type& insertItem);
//Function to insert insertItem in the list.
//Precondition: If the list is nonempty, it must be in order.
//Postcondition: insertItem is inserted at the proper place
// in the list, first points to the first node, last points
// to the last node of the new list, and count is
// incremented by 1.
void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem is
// deleted from the list; first points to the first node of
// the new list, last points to the last node of the new
// list, and count is decremented by 1; otherwise an
// appropriate message is printed.
doublyLinkedList();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;
doublyLinkedList(const doublyLinkedList<Type>& otherList);
//copy constructor
~doublyLinkedList();
//destructor
//Postcondition: The list object is destroyed.
protected:
int count;
nodeType<Type> *first; //pointer to the first node
nodeType<Type> *last; //pointer to the last node
private:
void copyList(const doublyLinkedList<Type>& otherList);
//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and assigned
// to this list.
};
template <class Type>
doublyLinkedList<Type>::doublyLinkedList()
{
first= NULL;
last = NULL;
count = 0;
}
template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const
{
return (first == NULL);
}
template <class Type>
void doublyLinkedList<Type>::destroy()
{
nodeType<Type> *temp; //pointer to delete the node
while (first != NULL)
{
temp = first;
first = first->next;
delete temp;
}
last = NULL;
count = 0;
}
template <class Type>
void doublyLinkedList<Type>::initializeList()
{
destroy();
}
template <class Type>
int doublyLinkedList<Type>::length() const
{
return count;
}
template <class Type>
void doublyLinkedList<Type>::print() const
{
nodeType<Type> *current; //pointer to traverse the list
current = first; //set current to point to the first node
while (current != NULL)
{
cout << current->info << " "; //output info
current = current->next;
}//end while
}//end print
template <class Type>
void doublyLinkedList<Type>::reversePrint() const
{
nodeType<Type> *current; //pointer to traverse
//the list
current = last; //set current to point to the
//last node
while (current != NULL)
{
cout << current->info << " ";
current = current->back;
}//end while
}//end reversePrint
template <class Type>
bool doublyLinkedList<Type>::
search(const Type& searchItem) const
{
bool found = false;
nodeType<Type> *current; //pointer to traverse the list
current = first;
while (current != NULL && !found)
if (current->info >= searchItem)
found = true;
else
current = current->next;
if (found)
found = (current->info == searchItem); //test for
//equality
return found;
}//end search
template <class Type>
Type doublyLinkedList<Type>::front() const
{
assert(first != NULL);
return first->info;
}
template <class Type>
Type doublyLinkedList<Type>::back() const
{
assert(last != NULL);
return last->info;
}
template <class Type>
void doublyLinkedList<Type>::insert(const Type& insertItem)
{
nodeType<Type> *current = NULL; //pointer to traverse the list
nodeType<Type> *trailCurrent = NULL; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node
bool found;
newNode = new nodeType<Type>; //create the node
newNode->info = insertItem; //store the new item in the node
newNode->next = NULL;
newNode->back = NULL;
if(first == NULL) //if the list is empty, newNode is
//the only node
{
first = newNode;
last = newNode;
count++;
}
else
{
found = false;
current = first;
while (current != NULL && !found) //search the list
if (current->info >= insertItem)
found = true;
else
{
trailCurrent = current;
current = current->next;
}
if (current == first) //insert newNode before first
{
first->back = newNode;
newNode->next = first;
first = newNode;
count++;
}
else
{
//insert newNode between trailCurrent and current
if (current != NULL)
{
trailCurrent->next = newNode;
newNode->back = trailCurrent;
newNode->next = current;
current->back = newNode;
}
else
{
trailCurrent->next = newNode;
newNode->back = trailCurrent;
last = newNode;
}
count++;
}//end else
}//end else
}//end insert
template <class Type>
void doublyLinkedList<Type>::deleteNode(const Type& deleteItem)
{
nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;
if (first == NULL)
cout << "Cannot delete from an empty list." << endl;
else if (first->info == deleteItem) //node to be deleted is
//the first node
{
current = first;
first = first->next;
if (first != NULL)
first->back = NULL;
else
last = NULL;
count--;
delete current;
}
else
{
found = false;
current = first;
while (current != NULL && !found) //search the list
if (current->info >= deleteItem)
found = true;
else
current = current->next;
if (current == NULL)
cout << "The item to be deleted is not in "
<< "the list." << endl;
else if (current->info == deleteItem) //check for
//equality
{
trailCurrent = current->back;
trailCurrent->next = current->next;
if (current->next != NULL)
current->next->back = trailCurrent;
if (current == last)
last = trailCurrent;
count--;
delete current;
}
else
cout << "The item to be deleted is not in list."
<< endl;
}//end else
}//end deleteNode
template <class Type>
void doublyLinkedList<Type>::copyList(const doublyLinkedList<Type>& otherList)
{
// please implement this function
// please implement this function
}
template <class Type>
doublyLinkedList<Type>::doublyLinkedList(const doublyLinkedList<Type>& otherList)
{
first = NULL;
copyList(otherList);
}
template <class Type>
const doublyLinkedList<Type>& doublyLinkedList<Type>::operator=
(const doublyLinkedList<Type>& otherList)
{
if (this != &otherList) //avoid self-copy
{
copyList(otherList);
}//end else
return *this;
}
template <class Type>
doublyLinkedList<Type>::~doublyLinkedList()
{
cout << "Definition of the destructor is left as an exercise." << endl;
cout << "See Programming Execrise 9." << endl;
}
#endif
Explanation / Answer
#include <iostream>
#include <cassert>
using namespace std;
//Definition of the node
template <class Type>
struct nodeType
{
Type info;
nodeType<Type> *next;
nodeType<Type> *back;
};
template <class Type>
class doublyLinkedList
{
public:
const doublyLinkedList<Type>& operator=
(const doublyLinkedList<Type> &);
//Overload the assignment operator.
void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;
bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise returns false.
void destroy();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL; last = NULL; count = 0;
void print() const;
//Function to output the info contained in each node.
void reversePrint() const;
//Function to output the info contained in each node
//in reverse order.
int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.
Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the first element of the list is returned.
Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the last element of the list is returned.
bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in the
// list, otherwise returns false.
void insert(const Type& insertItem);
//Function to insert insertItem in the list.
//Precondition: If the list is nonempty, it must be in order.
//Postcondition: insertItem is inserted at the proper place
// in the list, first points to the first node, last points
// to the last node of the new list, and count is
// incremented by 1.
void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem is
// deleted from the list; first points to the first node of
// the new list, last points to the last node of the new
// list, and count is decremented by 1; otherwise an
// appropriate message is printed.
doublyLinkedList();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;
doublyLinkedList(const doublyLinkedList<Type>& otherList);
//copy constructor
~doublyLinkedList();
//destructor
//Postcondition: The list object is destroyed.
protected:
int count;
nodeType<Type> *first; //pointer to the first node
nodeType<Type> *last; //pointer to the last node
private:
void copyList(const doublyLinkedList<Type>& otherList);
//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and assigned
// to this list.
};
template <class Type>
doublyLinkedList<Type>::doublyLinkedList()
{
first= NULL;
last = NULL;
count = 0;
}
template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const
{
return (first == NULL);
}
template <class Type>
void doublyLinkedList<Type>::destroy()
{
nodeType<Type> *temp; //pointer to delete the node
while (first != NULL)
{
temp = first;
first = first->next;
delete temp;
}
last = NULL;
count = 0;
}
template <class Type>
void doublyLinkedList<Type>::initializeList()
{
destroy();
}
template <class Type>
int doublyLinkedList<Type>::length() const
{
return count;
}
template <class Type>
void doublyLinkedList<Type>::print() const
{
nodeType<Type> *current; //pointer to traverse the list
current = first; //set current to point to the first node
while (current != NULL)
{
cout << current->info << " "; //output info
current = current->next;
}//end while
}//end print
template <class Type>
void doublyLinkedList<Type>::reversePrint() const
{
nodeType<Type> *current; //pointer to traverse
//the list
current = last; //set current to point to the
//last node
while (current != NULL)
{
cout << current->info << " ";
current = current->back;
}//end while
}//end reversePrint
template <class Type>
bool doublyLinkedList<Type>::
search(const Type& searchItem) const
{
bool found = false;
nodeType<Type> *current; //pointer to traverse the list
current = first;
while (current != NULL && !found)
if (current->info >= searchItem)
found = true;
else
current = current->next;
if (found)
found = (current->info == searchItem); //test for
//equality
return found;
}//end search
template <class Type>
Type doublyLinkedList<Type>::front() const
{
assert(first != NULL);
return first->info;
}
template <class Type>
Type doublyLinkedList<Type>::back() const
{
assert(last != NULL);
return last->info;
}
template <class Type>
void doublyLinkedList<Type>::insert(const Type& insertItem)
{
nodeType<Type> *current = NULL; //pointer to traverse the list
nodeType<Type> *trailCurrent = NULL; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node
bool found;
newNode = new nodeType<Type>; //create the node
newNode->info = insertItem; //store the new item in the node
newNode->next = NULL;
newNode->back = NULL;
if(first == NULL) //if the list is empty, newNode is
//the only node
{
first = newNode;
last = newNode;
count++;
}
else
{
found = false;
current = first;
while (current != NULL && !found) //search the list
if (current->info >= insertItem)
found = true;
else
{
trailCurrent = current;
current = current->next;
}
if (current == first) //insert newNode before first
{
first->back = newNode;
newNode->next = first;
first = newNode;
count++;
}
else
{
//insert newNode between trailCurrent and current
if (current != NULL)
{
trailCurrent->next = newNode;
newNode->back = trailCurrent;
newNode->next = current;
current->back = newNode;
}
else
{
trailCurrent->next = newNode;
newNode->back = trailCurrent;
last = newNode;
}
count++;
}//end else
}//end else
}//end insert
template <class Type>
void doublyLinkedList<Type>::deleteNode(const Type& deleteItem)
{
nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;
if (first == NULL)
cout << "Cannot delete from an empty list." << endl;
else if (first->info == deleteItem) //node to be deleted is
//the first node
{
current = first;
first = first->next;
if (first != NULL)
first->back = NULL;
else
last = NULL;
count--;
delete current;
}
else
{
found = false;
current = first;
while (current != NULL && !found) //search the list
if (current->info >= deleteItem)
found = true;
else
current = current->next;
if (current == NULL)
cout << "The item to be deleted is not in "
<< "the list." << endl;
else if (current->info == deleteItem) //check for
//equality
{
trailCurrent = current->back;
trailCurrent->next = current->next;
if (current->next != NULL)
current->next->back = trailCurrent;
if (current == last)
last = trailCurrent;
count--;
delete current;
}
else
cout << "The item to be deleted is not in list."
<< endl;
}//end else
}//end deleteNode
template <class Type>
void doublyLinkedList<Type>::copyList(const doublyLinkedList<Type>& otherList)
{
// please implement this function
// please implement this function
nodeType<Type> *temp = otherList; //pointer to traverse the otherList
nodeType<Type> *trailCurrent = NULL; //pointer just before current
nodeType<Type> *temp1 = NULL;// to traverse the list being copyied
nodeType<Type> *newNode; //pointer to create a node
if(temp==NULL)//if otherList is empty
{
cout<<"No need to copy otherList is empty ";
}
else//if not empty
{
first = new nodeType<Type>;//creating new node
first->info = temp->info;
first->next = NULL;
first->back = NULL;
last =first;
count++;
temp1 = first;
temp=temp->next;
while(temp != NULL)//traversing otherList, for every item in otherList, copyied to a newnode and created a list
{
newNode = new nodeType<Type>; //create the node
newNode->info = temp->info; //store the new item in the node
newNode->next = NULL;
newNode->back = temp1;//linking to list..
last = newNode;
temp1 = newNode;
temp=temp->next;
}
//the entire otherList would be copyied to current list
}
}
template <class Type>
doublyLinkedList<Type>::doublyLinkedList(const doublyLinkedList<Type>& otherList)
{
first = NULL;
copyList(otherList);
}
template <class Type>
const doublyLinkedList<Type>& doublyLinkedList<Type>::operator=
(const doublyLinkedList<Type>& otherList)
{
if (this != &otherList) //avoid self-copy
{
copyList(otherList);
}//end else
return *this;
}
template <class Type>
doublyLinkedList<Type>::~doublyLinkedList()
{
cout << "Definition of the destructor is left as an exercise." << endl;
cout << "See Programming Execrise 9." << endl;
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.