Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Tasks: • Copy doublyLinkedList.h to doublyLinkedList-descending.h • In doublyLin

ID: 3858916 • Letter: T

Question

Tasks:

• Copy doublyLinkedList.h to doublyLinkedList-descending.h

• In doublyLinkedList-descending.h, implement the copyList function (you can use copyList function of linked list in Chapter 5 as reference).

• In doublyLinkedList-descending.h, change the implementation of the doubly linked list so that items are in descending order. Hint: modifications are localized in three methods: search(), insert(), and deleteNode().

doublyLinkedList-descending.h

#include <iostream>

#include <cassert>

using namespace std;

//Definition of the node
template <class Type>
struct nodeType
{
Type info;
nodeType<Type> *next;
nodeType<Type> *back;
};

template <class Type>
class doublyLinkedList
{
public:
const doublyLinkedList<Type>& operator=
(const doublyLinkedList<Type> &);
//Overload the assignment operator.

void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise returns false.

void destroy();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL; last = NULL; count = 0;

void print() const;
//Function to output the info contained in each node.

void reversePrint() const;
//Function to output the info contained in each node
//in reverse order.

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the first element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the last element of the list is returned.

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in the
// list, otherwise returns false.

void insert(const Type& insertItem);
//Function to insert insertItem in the list.
//Precondition: If the list is nonempty, it must be in order.
//Postcondition: insertItem is inserted at the proper place
// in the list, first points to the first node, last points
// to the last node of the new list, and count is
// incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem is
// deleted from the list; first points to the first node of
// the new list, last points to the last node of the new
// list, and count is decremented by 1; otherwise an
// appropriate message is printed.

doublyLinkedList();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

doublyLinkedList(const doublyLinkedList<Type>& otherList);
//copy constructor
~doublyLinkedList();
//destructor
//Postcondition: The list object is destroyed.

protected:
int count;
nodeType<Type> *first; //pointer to the first node
nodeType<Type> *last; //pointer to the last node

private:
void copyList(const doublyLinkedList<Type>& otherList);
//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and assigned
// to this list.
};

template <class Type>
doublyLinkedList<Type>::doublyLinkedList()
{
first= NULL;
last = NULL;
count = 0;
}

template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const
{
return (first == NULL);
}

template <class Type>
void doublyLinkedList<Type>::destroy()
{
nodeType<Type> *temp; //pointer to delete the node

while (first != NULL)
{
temp = first;
first = first->next;
delete temp;
}

last = NULL;
count = 0;
}

template <class Type>
void doublyLinkedList<Type>::initializeList()
{
destroy();
}

template <class Type>
int doublyLinkedList<Type>::length() const
{
return count;
}

template <class Type>
void doublyLinkedList<Type>::print() const
{
nodeType<Type> *current; //pointer to traverse the list

current = first; //set current to point to the first node

while (current != NULL)
{
cout << current->info << " "; //output info
current = current->next;
}//end while
}//end print


template <class Type>
void doublyLinkedList<Type>::reversePrint() const
{
nodeType<Type> *current; //pointer to traverse
//the list

current = last; //set current to point to the
//last node

while (current != NULL)
{
cout << current->info << " ";
current = current->back;
}//end while
}//end reversePrint

template <class Type>
bool doublyLinkedList<Type>::
search(const Type& searchItem) const
{
bool found = false;
nodeType<Type> *current; //pointer to traverse the list

current = first;

while (current != NULL && !found)
if (current->info >= searchItem)
found = true;
else
current = current->next;

if (found)
found = (current->info == searchItem); //test for
//equality

return found;
}//end search

template <class Type>
Type doublyLinkedList<Type>::front() const
{
assert(first != NULL);

return first->info;
}

template <class Type>
Type doublyLinkedList<Type>::back() const
{
assert(last != NULL);

return last->info;
}

template <class Type>
void doublyLinkedList<Type>::insert(const Type& insertItem)
{
nodeType<Type> *current = NULL; //pointer to traverse the list
nodeType<Type> *trailCurrent = NULL; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node
bool found;

newNode = new nodeType<Type>; //create the node
newNode->info = insertItem; //store the new item in the node
newNode->next = NULL;
newNode->back = NULL;

if(first == NULL) //if the list is empty, newNode is
//the only node
{
first = newNode;
last = newNode;
count++;
}
else
{
found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= insertItem)
found = true;
else
{
trailCurrent = current;
current = current->next;
}

if (current == first) //insert newNode before first
{
first->back = newNode;
newNode->next = first;
first = newNode;
count++;
}
else
{
//insert newNode between trailCurrent and current
if (current != NULL)
{
trailCurrent->next = newNode;
newNode->back = trailCurrent;
newNode->next = current;
current->back = newNode;
}
else
{
trailCurrent->next = newNode;
newNode->back = trailCurrent;
last = newNode;
}

count++;
}//end else
}//end else
}//end insert

template <class Type>
void doublyLinkedList<Type>::deleteNode(const Type& deleteItem)
{
nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current

bool found;

if (first == NULL)
cout << "Cannot delete from an empty list." << endl;
else if (first->info == deleteItem) //node to be deleted is
//the first node
{
current = first;
first = first->next;

if (first != NULL)
first->back = NULL;
else
last = NULL;

count--;

delete current;
}
else
{
found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= deleteItem)
found = true;
else
current = current->next;

if (current == NULL)
cout << "The item to be deleted is not in "
<< "the list." << endl;
else if (current->info == deleteItem) //check for
//equality
{
trailCurrent = current->back;
trailCurrent->next = current->next;

if (current->next != NULL)
current->next->back = trailCurrent;

if (current == last)
last = trailCurrent;

count--;
delete current;
}
else
cout << "The item to be deleted is not in list."
<< endl;
}//end else
}//end deleteNode

template <class Type>
void doublyLinkedList<Type>::copyList(const doublyLinkedList<Type>& otherList)
{
   // please implement this function
   // please implement this function

}

template <class Type>
doublyLinkedList<Type>::doublyLinkedList(const doublyLinkedList<Type>& otherList)
{
first = NULL;
copyList(otherList);
}

template <class Type>
const doublyLinkedList<Type>& doublyLinkedList<Type>::operator=
                           (const doublyLinkedList<Type>& otherList)
{
   if (this != &otherList) //avoid self-copy
{
   copyList(otherList);
}//end else

return *this;
}

template <class Type>
doublyLinkedList<Type>::~doublyLinkedList()
{
   cout << "Definition of the destructor is left as an exercise." << endl;
   cout << "See Programming Execrise 9." << endl;
}

#endif

Explanation / Answer

#include <iostream>

#include <cassert>

using namespace std;

//Definition of the node
template <class Type>
struct nodeType
{
    Type info;
    nodeType<Type> *next;
    nodeType<Type> *back;
};

template <class Type>
class doublyLinkedList
{
public:
    const doublyLinkedList<Type>& operator=
                           (const doublyLinkedList<Type> &);
      //Overload the assignment operator.

    void initializeList();
      //Function to initialize the list to an empty state.
      //Postcondition: first = NULL; last = NULL; count = 0;

    bool isEmptyList() const;
      //Function to determine whether the list is empty.
      //Postcondition: Returns true if the list is empty,
      //               otherwise returns false.

    void destroy();
      //Function to delete all the nodes from the list.
      //Postcondition: first = NULL; last = NULL; count = 0;

    void print() const;
      //Function to output the info contained in each node.

    void reversePrint() const;
      //Function to output the info contained in each node
      //in reverse order.

    int length() const;
      //Function to return the number of nodes in the list.
      //Postcondition: The value of count is returned.

    Type front() const;
      //Function to return the first element of the list.
      //Precondition: The list must exist and must not be empty.
      //Postcondition: If the list is empty, the program terminates;
      //    otherwise, the first element of the list is returned.

    Type back() const;
      //Function to return the last element of the list.
      //Precondition: The list must exist and must not be empty.
      //Postcondition: If the list is empty, the program terminates;
      //    otherwise, the last element of the list is returned.

    bool search(const Type& searchItem) const;
      //Function to determine whether searchItem is in the list.
      //Postcondition: Returns true if searchItem is found in the
      //    list, otherwise returns false.

    void insert(const Type& insertItem);
      //Function to insert insertItem in the list.
      //Precondition: If the list is nonempty, it must be in order.
      //Postcondition: insertItem is inserted at the proper place
      //    in the list, first points to the first node, last points
      //    to the last node of the new list, and count is
      //    incremented by 1.

    void deleteNode(const Type& deleteItem);
      //Function to delete deleteItem from the list.
      //Postcondition: If found, the node containing deleteItem is
      //    deleted from the list; first points to the first node of
      //    the new list, last points to the last node of the new
      //    list, and count is decremented by 1; otherwise an
      //    appropriate message is printed.

    doublyLinkedList();
      //default constructor
      //Initializes the list to an empty state.
      //Postcondition: first = NULL; last = NULL; count = 0;

    doublyLinkedList(const doublyLinkedList<Type>& otherList);
      //copy constructor
    ~doublyLinkedList();
      //destructor
      //Postcondition: The list object is destroyed.

protected:
    int count;
    nodeType<Type> *first; //pointer to the first node
    nodeType<Type> *last; //pointer to the last node

private:
    void copyList(const doublyLinkedList<Type>& otherList);
      //Function to make a copy of otherList.
      //Postcondition: A copy of otherList is created and assigned
      //    to this list.
};

template <class Type>
doublyLinkedList<Type>::doublyLinkedList()
{
    first= NULL;
    last = NULL;
    count = 0;
}

template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const
{
    return (first == NULL);
}

template <class Type>
void doublyLinkedList<Type>::destroy()
{
    nodeType<Type> *temp; //pointer to delete the node

    while (first != NULL)
    {
        temp = first;
        first = first->next;
        delete temp;
    }

    last = NULL;
    count = 0;
}

template <class Type>
void doublyLinkedList<Type>::initializeList()
{
    destroy();
}

template <class Type>
int doublyLinkedList<Type>::length() const
{
    return count;
}

template <class Type>
void doublyLinkedList<Type>::print() const
{
    nodeType<Type> *current; //pointer to traverse the list

    current = first; //set current to point to the first node

    while (current != NULL)
    {
        cout << current->info << " "; //output info
        current = current->next;
    }//end while
}//end print


template <class Type>
void doublyLinkedList<Type>::reversePrint() const
{
    nodeType<Type> *current; //pointer to traverse
                             //the list

    current = last; //set current to point to the
                     //last node

    while (current != NULL)
    {
        cout << current->info << " ";
        current = current->back;
    }//end while
}//end reversePrint

template <class Type>
bool doublyLinkedList<Type>::
                       search(const Type& searchItem) const
{
    bool found = false;
    nodeType<Type> *current; //pointer to traverse the list

    current = first;

    while (current != NULL && !found)
        if (current->info >= searchItem)
            found = true;
        else
            current = current->next;

    if (found)
       found = (current->info == searchItem); //test for
                                              //equality

    return found;
}//end search

template <class Type>
Type doublyLinkedList<Type>::front() const
{
    assert(first != NULL);

    return first->info;
}

template <class Type>
Type doublyLinkedList<Type>::back() const
{
    assert(last != NULL);

    return last->info;
}

template <class Type>
void doublyLinkedList<Type>::insert(const Type& insertItem)
{
    nodeType<Type> *current = NULL;      //pointer to traverse the list
    nodeType<Type> *trailCurrent = NULL; //pointer just before current
    nodeType<Type> *newNode;      //pointer to create a node
    bool found;

    newNode = new nodeType<Type>; //create the node
    newNode->info = insertItem; //store the new item in the node
    newNode->next = NULL;
    newNode->back = NULL;

    if(first == NULL) //if the list is empty, newNode is
                      //the only node
    {
       first = newNode;
       last = newNode;
       count++;
    }
    else
    {
        found = false;
        current = first;

        while (current != NULL && !found) //search the list
            if (current->info >= insertItem)
                found = true;
            else
            {
                trailCurrent = current;
                current = current->next;
            }

        if (current == first) //insert newNode before first
        {
            first->back = newNode;
            newNode->next = first;
            first = newNode;
            count++;
        }
        else
        {
              //insert newNode between trailCurrent and current
            if (current != NULL)
            {
                trailCurrent->next = newNode;
                newNode->back = trailCurrent;
                newNode->next = current;
                current->back = newNode;
            }
            else
            {
                trailCurrent->next = newNode;
                newNode->back = trailCurrent;
                last = newNode;
            }

            count++;
        }//end else
    }//end else
}//end insert

template <class Type>
void doublyLinkedList<Type>::deleteNode(const Type& deleteItem)
{
    nodeType<Type> *current; //pointer to traverse the list
    nodeType<Type> *trailCurrent; //pointer just before current

    bool found;

    if (first == NULL)
        cout << "Cannot delete from an empty list." << endl;
    else if (first->info == deleteItem) //node to be deleted is
                                       //the first node
    {
        current = first;
        first = first->next;

        if (first != NULL)
            first->back = NULL;
        else
            last = NULL;

        count--;

        delete current;
    }
    else
    {
        found = false;
        current = first;

        while (current != NULL && !found) //search the list
            if (current->info >= deleteItem)
                found = true;
            else
                current = current->next;

        if (current == NULL)
            cout << "The item to be deleted is not in "
                 << "the list." << endl;
        else if (current->info == deleteItem) //check for
                                                 //equality
        {
            trailCurrent = current->back;
            trailCurrent->next = current->next;

            if (current->next != NULL)
                current->next->back = trailCurrent;

            if (current == last)
                last = trailCurrent;

            count--;
            delete current;
        }
        else
            cout << "The item to be deleted is not in list."
                 << endl;
    }//end else
}//end deleteNode

template <class Type>
void doublyLinkedList<Type>::copyList(const doublyLinkedList<Type>& otherList)
{
    // please implement this function
    // please implement this function


    nodeType<Type> *temp = otherList;      //pointer to traverse the otherList
    nodeType<Type> *trailCurrent = NULL; //pointer just before current
    nodeType<Type> *temp1 = NULL;// to traverse the list being copyied
    nodeType<Type> *newNode;      //pointer to create a node


    if(temp==NULL)//if otherList is empty
    {
       cout<<"No need to copy otherList is empty ";      
   }
   else//if not empty
   {
       first = new nodeType<Type>;//creating new node
       first->info = temp->info;
       first->next = NULL;
       first->back = NULL;
       last =first;
       count++;
      
       temp1 = first;
       temp=temp->next;
       while(temp != NULL)//traversing otherList, for every item in otherList, copyied to a newnode and created a list
       {
           newNode = new nodeType<Type>; //create the node
           newNode->info = temp->info; //store the new item in the node
           newNode->next = NULL;
           newNode->back = temp1;//linking to list..
           last = newNode;
           temp1 = newNode;
           temp=temp->next;
           }
      
   //the entire otherList would be copyied to current list  
   }



}

template <class Type>
doublyLinkedList<Type>::doublyLinkedList(const doublyLinkedList<Type>& otherList)
{
    first = NULL;
    copyList(otherList);
}

template <class Type>
const doublyLinkedList<Type>& doublyLinkedList<Type>::operator=
                            (const doublyLinkedList<Type>& otherList)
{
     if (this != &otherList) //avoid self-copy
     {
        copyList(otherList);
     }//end else

     return *this;
}

template <class Type>
doublyLinkedList<Type>::~doublyLinkedList()
{
    cout << "Definition of the destructor is left as an exercise." << endl;
    cout << "See Programming Execrise 9." << endl;
}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote