WRITE A MATLAB CODE TO SOLVE THE FOLLOWING PROBLEM using numerical methods for s
ID: 3868865 • Letter: W
Question
WRITE A MATLAB CODE TO SOLVE THE FOLLOWING PROBLEM
using numerical methods for scientists and engineers 3rd edition
RESULTS SHOULD BE AS FOLLOW
Problem # 3 P-3 Flow between two parallel plates is described by the following equation: d'u 1 op with boundary conditions given as u-,-0 & u,-0 ox Calculate the velocity profile using the shooting method for solving the given BVP and compare your results by plotting the numerical solution over the plot of the analytical solution described by: u- g ( Hint: use 1.75 for the first initial slope, and the other one is 0.45 to 0.5. resuls by plotting the numerical soli tfhe shooting method for sol op y2_h2) where-?=_0.000025, -0.75 and h= ±30 oxExplanation / Answer
load sensorData
t1 = (0:length(s1)-1)/Fs;
t2 = (0:length(s2)-1)/Fs;
subplot(2,1,1)
plot(t1,s1)
title('s_1')
subplot(2,1,2)
plot(t2,s2)
title('s_2')
xlabel('Time (s)')
[acor,lag] = xcorr(s2,s1);
[~,I] = max(abs(acor));
lagDiff = lag(I)
figure
plot(lag,acor)
a3 = gca;
a3.XTick = sort([-3000:1000:3000 lagDiff]);
s1al = s1(-lagDiff+1:end);
t1al = (0:length(s1al)-1)/Fs;
subplot(2,1,1)
plot(t1al,s1al)
title('s_1, aligned')
subplot(2,1,2)
plot(t2,s2)
title('s_2')
xlabel('Time (s)')
timelag = 0.23;
delta = round(Fs*timelag);
alpha = 0.5;
orig = [mtlb;zeros(delta,1)];
echo = [zeros(delta,1);mtlb]*alpha;
mtEcho = orig + echo;
t = (0:length(mtEcho)-1)/Fs;
subplot(2,1,1)
plot(t,[orig echo])
legend('Original','Echo')
subplot(2,1,2)
plot(t,mtEcho)
legend('Total')
xlabel('Time (s)')
[cr,lgs] = xcorr(xabc,'coeff');
for row = 1:3
for col = 1:3
nm = 3*(row-1)+col;
subplot(3,3,nm)
stem(lgs,cr(:,nm),'.')
title(sprintf('c_{%d%d}',row,col))
ylim([0 1])
end
end
[cr,lgs] = xcorr(xabc,5,'coeff');
for row = 1:3
for col = 1:3
nm = 3*(row-1)+col;
subplot(3,3,nm)
stem(lgs,cr(:,nm),'.')
title(sprintf('c_{%d%d}',row,col))
ylim([0 1])
end
end
cu = xcorr(xabc,'unbiased');
for row = 1:3
for col = 1:3
nm = 3*(row-1)+col;
subplot(3,3,nm)
stem(-(N-1):(N-1),cu(:,nm),'.')
title(sprintf('c_{%d%d}',row,col))
end
end
stem(lags,c);
hold on
plot(nn,dd)
xlabel('Lag')
legend('xcorr','Analytic')
hold off
cu = xcorr(x,'unbiased');
du = dd./(N-abs(nn));
stem(lags,cu);
hold on
plot(nn,du)
xlabel('Lag')
legend('xcorr','Analytic')
hold off
cb = xcorr(x,'biased');
db = dd/N;
stem(lags,cb);
hold on
plot(nn,db)
xlabel('Lag')
legend('xcorr','Analytic')
hold off
N = 16;
n = 0:N-1;
a = 0.84;
b = 0.92;
xa = a.^n;
xb = b.^n;
r = xcorr(xa,xb);
stem(-(N-1):(N-1),r)
figure
stem(-(N-1):(N-1),xcorr(xb,xa))
hold on
stem(-(N-1):(N-1),fliplr(r),'--*')
xlabel('Lag')
legend('xcorr(x_b,x_a)','fliplr(xcorr(x_a,x_b))')
xc = 0.77.^(0:20-1);
[xca,la] = xcorr(xa,xc);
[xcb,lb] = xcorr(xb,xc);
figure
subplot(2,1,1)
stem(la,xca)
subplot(2,1,2)
stem(lb,xcb)
xlabel('Lag')
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.