Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 3 (6 points) Let D denote the domain of all people. Alex is an individua

ID: 3890234 • Letter: P

Question

Problem 3 (6 points) Let D denote the domain of all people. Alex is an individual in D. You are given the following predicates ·D(x) : x is a doctor ·M(x) : x has a medical license K(x, y) : x knows y ·T(x, y) : x trusts y Translate each statement below into symbolic predicate logic. a. Every doctor has a medical license. b. Everybody knows a doctor whom they trust c. Alex doesn't know anyone with a medical license. d. Nobody trusts all doctors. Problem 4 (3 points) Given the following proposition in symbolic form (vxEZa yEZ(xysx+y)v(y 1)) (P2) Write the negation of proposition (P2) in the simplest form (with the negation moved as far to the right as possible). For example, for the proposition: (v x ZX x = x + 1 ) the negation would be: (BxEZ(x x+1). Problem 5 (7 points)

Explanation / Answer

Assume,

=and

=or

~=Not

Problem 3

a)

x (D(x) -> M(x))

b)

x y ( K(x , y) T(x,y) D(y) )

c)

x y ( ~K(x , y) M(y) )

d)

~ ( x x ( T(x,y) D(y) ) )

Or

x x ( ~( T(x,y) D(y) ) )

Problem 4

The given proposition is ( x Z)( y Z) ( ( x.y x2 + y2 ) ( y1 ) )

Apply negation from left to right step by step as follows:

~(( x Z)( y Z) ( ( x.y x2 + y2 ) ( y1 ) ))

( x Z)~( y Z) ( ( x.y x2 + y2 ) ( y1 ) )

( x Z)( y Z)~ ( ( x.y x2 + y2 ) ( y1 ) )

( x Z)( y Z)~ ( ( x.y x2 + y2 ) ( y1 ) )

( x Z)( y Z) (~ ( x.y x2 + y2 ) ~( y1 ) )

( x Z)( y Z) ( ( x.y > x2 + y2 ) ~( y1 ) )

( x Z)( y Z) ( ( x.y > x2 + y2 ) ( y=1 ) )

Problem 5

a)

L: system is locked

Q: new messages will be queued

P: system is functioning normally

O: Old messages will be sent to message buffer

N: new messages will be sent to message buffer

b)

~L -> Q                 (S1)

~L <-> P                (S2)

~Q -> O                (S3)

~L -> N                 (S4)

~N                         (S5)

c)

The system is true, if all above five specifications are true simultaneously.

This can be proved by simple reasoning as follows:

So all the specifications are true for the following assignments

N

False

False

False

L

True

True

True

P

False

False

False

Q

True

False

True

O

False

True

True

All system specifications are

True

True

True

Therefore the system is consistent

Proof using truth table:

A determine whether the system is consistent or not , a truth table can be constructed. For some assignment, if all five have truth values, then the system is consistent.

L

Q

P

O

N

~L

~Q

~L -> Q

~L <-> P

~Q -> O

~L -> N

~N

F

F

F

F

F

T

T

F

F

F

F

T

F

F

F

F

T

T

T

F

F

F

T

F

F

F

F

T

F

T

T

F

F

T

F

T

F

F

F

T

T

T

T

F

F

T

T

F

F

F

T

F

F

T

T

F

T

F

F

T

F

F

T

F

T

T

T

F

T

F

T

F

F

F

T

T

F

T

T

F

T

T

F

T

F

F

T

T

T

T

T

F

T

T

T

F

F

T

F

F

F

T

F

T

F

T

F

T

F

T

F

F

T

T

F

T

F

T

T

F

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

T

T

F

T

F

T

T

F

F

T

T

F

F

T

F

T

T

T

F

T

F

T

T

F

T

T

F

T

T

T

T

F

F

T

T

T

F

T

F

T

T

T

F

T

F

T

T

T

T

T

F

T

T

T

T

F

T

F

F

F

F

F

T

T

T

F

T

T

T

F

F

F

T

F

T

T

T

F

T

F

T

F

F

T

F

F

T

T

T

T

T

T

T

F

F

T

T

F

T

T

T

T

T

F

T

F

T

F

F

F

T

T

F

F

T

T

T

F

T

F

T

F

T

T

F

F

T

F

T

F

T

T

F

F

T

T

F

T

T

T

T

F

T

T

T

F

T

T

F

T

T

F

T

T

F

F

F

F

F

T

T

T

T

T

T

T

F

F

T

F

F

T

T

T

T

F

T

T

F

T

F

F

F

T

T

T

T

T

T

T

F

T

T

F

F

T

T

T

T

F

T

T

T

F

F

F

F

T

F

T

T

T

T

T

T

F

T

F

F

T

F

T

T

F

T

T

T

T

F

F

F

T

F

T

T

T

T

T

T

T

T

F

F

T

F

T

T

F

The bolded rows represents that all the specifications are true for 3 assignments.

Thus the system is consistent.

N

False

False

False

L

True

True

True

P

False

False

False

Q

True

False

True

O

False

True

True

All system specifications are

True

True

True

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote