Part I-Lagrange Polynomials Theorem (Lagrange Polynomials] Let f(x) be continuou
ID: 3937063 • Letter: P
Question
Explanation / Answer
function [ fx ] = langrangePolyOfDegree2( p1, p2, p3 )
fx1 = @(x)( p1(1,2)*(((x-p2(1,1))*(x-p3(1,1)))/((p1(1,1)-p2(1,1))*(p1(1,1)-p3(1,1)))) );
fx2 = @(x)( p2(1,2)*(((x-p1(1,1))*(x-p3(1,1)))/((p2(1,1)-p1(1,1))*(p2(1,1)-p3(1,1)))) );
fx3 = @(x)( p3(1,2)*(((x-p2(1,1))*(x-p1(1,1)))/((p3(1,1)-p2(1,1))*(p3(1,1)-p1(1,1)))) );
fx = @(x)( fx1(x) + fx2(x) + fx3(x) );
end
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.