The normal boiling temperature of benzene is 353.24 K, and thevapor pressure of
ID: 686503 • Letter: T
Question
The normal boiling temperature of benzene is 353.24 K, and thevapor pressure of liquid benzene is 1.19x10^4 Pa at 20 degreesCelsius. The enthalpy of f.95 fusion is 9.95 kJ/mol, and thevapor pressure of solid benzene is 137 Pa at -44.3 degreesCelsius. Calculate the following:a. Hm vaporization
b. Sm vaporization
c. Triple point temperature and pressure
Explanation / Answer
ln [ P2/P1] = (H/R)*[1/T1 - 1/T2] P1 = 1 atm = 1.01325 e5 Pa; T1 = 353.24 K P2 = 1.19e4 Pa, T2 = 20 C = 293 K ln[ 1.19e4 / 1.01325 e5] = (H/R)*[ 1/353.24 - 1/ 293] -2.14179477 = (H/R)*(-0.000582032809) H = R*3679.8523 K = (8.314 J/mol/K)*(3679.8523 K) = 30594.292J/mol = 30.59 kJ/mol b) S = H/T = 30.59 kJ/mol/ 298 K = 103 J/mol/K c) ln[P2/P1] = (H1/R)*[1/T1 - 1/T2] ln[P4/P3] = (H2/R)*[1/T3 - 1/T4] P4 = P2 T2 = T4 P1 = 101325 Pa T1 = 353.24 K P3 = 137 Pa T3 = -44.3 C = 228.7 K => ln[P4/P1] = (H1/R)*[1/T1 - 1/T4] = ln[P4] -ln[P1] ln[P4/P3] = (H2/R)*[1/T3 -1/T4] = ln[P4] - ln[P3] ln[P3] - ln[P1] = (H1/R)*[1/T1 - 1/T4] -(H2/R)*[1/T3 - 1/T4] ln[P3/P1] = [H1/(R*T1) - H2/(R*T3)] +[-H1/R + H2/R]/T4 -6.60610753 = 5.18301291 -4876.11258/T4 T4 = 413.605904 K => P4 = 463320.761 = 4.63 e5 Pa
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.