Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

2. Block 1 is placed on a 30 incline, and is attached to block 2 by a rope. Bloc

ID: 1394824 • Letter: 2

Question

2. Block 1 is placed on a 30 incline, and is attached to block 2 by a rope. Block 2 is hanging from a pulley over the top edge of the incline and is also completely submerged in a tank of water. a. (5 pts.) For what block 2 density could 5 kg static equilibrium be maintained without static friction? b. (5 pts.) If block 2 were aluminum, what is the smallest coefficient of static friction required to for static equilibrium? c. (5 pts.) If the coefficient of static friction were us 0.30, for what maximum and minimum block 2 densities could static equilibrium be maintained?

Explanation / Answer


part (a)

for M1

T - M1*g*sin30 = M1*a

for M2

T + Fb - M2*g = M2*a


in static equlibrium


a = 0


therefore

T = M1*g*sin30


Fb = M2*g - M1*g*sin30


buoyancy force Fb = d_water*V*g

d_water*Volume = M2 - M1*sin30


1000*volume = 5 - 2

Volume = 0.003 m^3


density = M2/V = 5/0.003 = 1666.7 kg / m^3   <----------answer


----------------------

dAl = 2700 kg /m^3


for M1

T - us*M1*g*sin30 - M1*g*sin30 = Fnet

for M2

T + Fb - M2*g = Fnet

T - us*M1*g*cos30 - M1*g*sin30 = T + Fb - M2*g


us*M1*g*sin30 = M2*g - Fb - M1*g*sin30

Fb = dw*V*g

us*M1*g*cos30 = M2*g - dw*V*g - M1*g*sin30


us*M1*cos30 = dAl*V - dw*V - M1*sin30


us*4*cos30 = (2700*0.003)-(1000*0.003)-(4*sin30)

us = 0.89    <----------answer


-------------

partc


M2 = d*V

for smallest

M1*g*sin30 - us*M1*g*cos30 = M2*g - Fb


M1*g*sin30 - us*M1*g*cos30 = d*V*g - dw*V*g


M1*sin30 - us*M1*cos30 = d*V - dw*V

(4*sin30)-(0.3*4*cos30) = (d*0.003)-(1000*0.003)

d = 1320 kg /m^3 <----------answer

for maximum

M1*g*sin30 + us*M1*g*cos30 = M2*g - Fb


M1*g*sin30 + us*M1*g*cos30 = d*V*g - dw*V*g


M1*sin30 + us*M1*cos30 = d*V - dw*V

(4*sin30)+(0.3*4*cos30) = (d*0.003)-(1000*0.003)

d = 2017.1 kg /m^3   <----------answer