A mass moving horizontally on a spring executes simple harmonic motion. The 0.15
ID: 1475394 • Letter: A
Question
A mass moving horizontally on a spring executes simple harmonic motion. The 0.151-kg mass moves along the x-axis between the points x-0.283 m and x2-0.415 m, with a period of oscillation equal to 0.567 s. For this motion, determine the frequency, f, the equilibrium position, Xeg, the amplitude, A, the maximum speed, Vmax, the maximum magnitude of acceleration, amax, the spring constant, k, and the total mechanical energy, Eto Number Hz Number eq Number A= Im Number (Scroll down for more answer blanks.) m/sExplanation / Answer
mass=m=0.151 kg
amplitude=(x2-x1)/2=(0.415-(-0.283))/2=0.349 m
time period=0.567 seconds
part 1:
frequency=1/time period=1/0.567=1.7637 Hz
part 2:
equilibrium position=x1+amplitude=-0.283+0.349=0.066 m
part 3:
amplitude=0.349 m
part 4:maximum speed=angular frequency*amplitude
=2*pi*f*A
=2*pi*1.7637*0.349=3.8675 m/s
part 5:
maximum acceleration=angular frequency^2*amplitude
=(2*pi*f)^2*A
=(2*pi*1.7637)^2*0.349
=42.858 m/s^2
part 6:
angular frequency=sqrt(k/m)
==>2*pi*1.7637=sqrt(k/0.151)
==>k=0.151*(2*pi*1.7637)^2
==>k=18.543 N/m
part 7:
total energy=0.5*mass*maximum speed^2
=0.5*0.151*3.8675^2
=1.1293 J
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.