No handwriting please Anyone can give me some info that i can use to make a pres
ID: 1713806 • Letter: N
Question
No handwriting please Anyone can give me some info that i can use to make a presentation slides about (Seismic and Impact of design of blast Resistance bulking )No handwriting please No handwriting please Anyone can give me some info that i can use to make a presentation slides about (Seismic and Impact of design of blast Resistance bulking )
No handwriting please No handwriting please Anyone can give me some info that i can use to make a presentation slides about (Seismic and Impact of design of blast Resistance bulking )
No handwriting please
Explanation / Answer
http://www.iitk.ac.in/nicee/wcee/article/14_05-01-0536.PDF this link is for blast Resistance bulking.
SEISMIC DESIGN FACTORS
The following factors affect and are affected by the design of the building. It is important that the design team understands these factors and deal with them prudently in the design phase.
Torsion: Objects and buildings have a center of mass, a point by which the object (building) can be balanced without rotation occurring. If the mass is uniformly distributed then the geometric center of the floor and the center of mass may coincide. Uneven mass distribution will position the center of mass outside of the geometric center causing "torsion" generating stress concentrations. A certain amount of torsion is unavoidable in every building design. Symmetrical arrangement of masses, however, will result in balanced stiffness against either direction and keep torsion within a manageable range.
Damping: Buildings in general are poor resonators to dynamic shock and dissipate vibration by absorbing it. Damping is a rate at which natural vibration is absorbed.
Ductility: Ductility is the characteristic of a material (such as steel) to bend, flex, or move, but fails only after considerable deformation has occurred. Non-ductile materials (such as poorly reinforced concrete) fail abruptly by crumbling. Good ductility can be achieved with carefully detailed joints.
Strength and Stiffness: Strength is a property of a material to resist and bear applied forces within a safe limit. Stiffness of a material is a degree of resistance to deflection or drift (drift being a horizontal story-to-story relative displacement).
Building Configuration: This term defines a building's size and shape, and structural and nonstructural elements. Building configuration determines the way seismic forces are distributed within the structure, their relative magnitude, and problematic design concerns.
Soft First Story is a discontinuity of strength and stiffness for lateral load at the ground level.
Discontinuous Shear Walls do not line up consistently one upon the other causing "soft" levels.
Variation in Perimeter Strength and Stiffness such as an open front on the ground level usually causes eccentricity or torsion.
Reentrant Corners in the shapes of H, L, T, U, +, or []develop stress concentration at the reentrant corner and torsion. Seismic designs should adequately separate reentrant corners or strengthen them.
Knowledge of the building's period, torsion, damping, ductility, strength, stiffness, and configuration can help one determine the most appropriate seismic design devices and mitigation strategies to employ.
C. SEISMIC DESIGN STRATEGIES AND DEVICES
Diaphragms: Floors and roofs can be used as rigid horizontal planes, or diaphragms, to transfer lateral forces to vertical resisting elements such as walls or frames.
Shear Walls: Strategically located stiffened walls are shear walls and are capable of transferring lateral forces from floors and roofs to the foundation.
Braced Frames: Vertical frames that transfer lateral loads from floors and roofs to foundations. Like shear walls, Braced Frames are designed to take lateral loads but are used where shear walls are impractical.
Moment-Resistant Frames: Column/beam joints in moment-resistant frames are designed to take both shear and bending thereby eliminating the space limitations of solid shear walls or braced frames. The column/beam joints are carefully designed to be stiff yet to allow some deformation for energy dissipation taking advantage of the ductility of steel (reinforced concrete can be designed as a Moment-Resistant Frame as well).Energy-Dissipating Devices: Making the building structure more resistive will increase shaking which may damage the contents or the function of the building. Energy-Dissipating Devices are used to minimize shaking. Energy will dissipate if ductile materials deform in a controlled way. An example is Eccentric Bracing whereby the controlled deformation of framing members dissipates energy. However, this will not eliminate or reduce damage to building contents. A more direct solution is the use of energy dissipating devices that function like shock absorbers in a moving car. The period of the building will be lengthened and the building will "ride out" the shaking within a tolerable range.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.