f(x)-x2-10x + 23 Write a MATLAB code with the following requirements: . Set the
ID: 1766402 • Letter: F
Question
f(x)-x2-10x + 23 Write a MATLAB code with the following requirements: . Set the maximum number of iterations to 30 and set the accuracy on the root to 0.01. solve for the root with the specified accuracy. . Show the number of iterations. . Include a break statement or use a while loop so when the solution reaches the specified accuracy it will stop. a) Solve using the secant method and x , x,-2, Plot the function and the root on the same figure. b) Solve using the Newton-Raphson method and xo = 2.5. c) Comment on the results. How many iterations did it take for the specified accuracy for each method?Explanation / Answer
--------------------------------- Solution using secant method ----------------------------------------
tolerance=0.01;
f=@(x) x^2-10*x+23;
x0=1;
x1=2;
iterations=1;
maximumIterations=30;
c=(x0*f(x1)-x1*f(x0))/(f(x1)-f(x0));
while abs(f(c))>tolerance
x0=x1;
x1=c;
c=(x0*f(x1)-x1*f(x0))/(f(x1)-f(x0));
iterations=iterations+1;
if(iterations==maximumIterations)
break;
end
end
if iterations<maximumIterations
disp(['Root of this Equation = ' num2str(c)]);
fprintf('Number of iterations taken: %d ', iterations);
else
disp('Error! Cannot find Root of this equation.');
end
% plotting
x = -10:0.01:10;
f = x.^2-10.*x+23;
figure;
plot(x,f)
hold on;
plot(c,'r');
grid on
-------------------------------------------- Solution using Newton Raphson -----------------------------------------------
tolerance=0.01;
f=@(x) x^2-10*x+23;
iterations=1;
maximumIterations=30;
d=@(x) 2*x-10;
x(1)=2.5;
error=100;
while error>tolerance
x(iterations+1)=x(iterations)-((f(x(iterations))/d(x(iterations))));
error=abs((x(iterations+1)-x(iterations))/x(iterations));
iterations=iterations+1;
if(iterations==maximumIterations)
break;
end
end
root=x(iterations);
disp(root);
fprintf('Number of iterations taken: %d ', iterations);
--------------------------- Question c------------------------------------
% Secant method took 3 iterations whereas newton raphson took 4 iterations.
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.