Find the points of inflection of the graph of the function. (If an answer does n
ID: 2849310 • Letter: F
Question
Find the points of inflection of the graph of the function. (If an answer does not exist, enter DNE.)
f(x) = 5 sin x + 5 cos x, [0, 2]
Describe the concavity. (Enter your answers using interval notation.)
.......................................................
Complete two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal places.)
f(x) = x2 6, x1 = 2.7
xn
f(xn)
f'(xn)
(x, y) = (smaller x-value) (x, y) = (larger x-value) concave upward (?,?) concave downward (?,?)Explanation / Answer
f(x)=5sinx +5cosx
f '(x)=5cosx -5sinx
f ''(x)=-5sinx -5cosx
inflection point ==>f "(x)=0 ==>-5sinx -5cosx =0 ==>x =3pi/4 ,7pi/4
x=3pi/4 ==>f(3pi/4)=5sin(3pi/4) +5cos(3pi/4) =0
x=7pi/4 ==>f(7pi/4)=5sin(7pi/4) +5cos(7pi/4) =0
(x,y)=(3pi/4,0)
(x,y)=(7pi/4,0)
concave upward ==>f "(x)>0
==>-5sinx -5cosx >0
==>5sinx +5cosx <0
==>5sinx<-5cosx
==>sinx<-cosx
==>tanx<-1
==>x=(3pi/4,7pi/4)
concave downward ==>f "(x)<0
==>-5sinx -5cosx <0
==>5sinx +5cosx >0
==>5sinx>-5cosx
==>sinx>-cosx
==>tanx>-1
==>x=[0,3pi/4)U(7pi/4,2pi]
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.