Given the ODE y\'\' + y = tan x, the general solution is yc + yp, where yc = C1c
ID: 2968410 • Letter: G
Question
Given the ODE y'' + y = tan x, the general solution is yc + yp, where
yc = C1cos x + C2sin x. For this ODE, yp =Question 2 options:
A) x(cos x) + (sin x)ln|sec x|
B) -x(sin x) - (cos x)ln|sin x|
C) -x(cos x) + (sin x)ln|sin x|
D) (1/2)sec x
E) -(cos x)ln|sec x + tan x|
F) -2 + (sin x)ln|sec x + tan x|
G) -(cos x)ln|sec x + tan x| - (sin x)ln|csc x + cot x|
H) -(sin x)ln|csc 2x + cot 2x|
I) (1/2)tan x + (1/2)(cos x)ln|sec x + tan x|
J) -(sin x)ln|csc x + cot x|
K) none of these
I will only award points for the correct answer
Explanation / Answer
E
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.