Use Buclid\'s algorithm to find the greatest common factor of the following pair
ID: 3146292 • Letter: U
Question
Use Buclid's algorithm to find the greatest common factor of the following pairs ofintegers, aand b (a) 3745 and 1172(b 192876 and 192918 Look back at your calculations for the previous exercise. Use those to help decide whether there are pairs of integers x and y which satisfy the following equations. If so, use the method ofback substitution or othermethod, with those calculations to find an integer-pair solution [x, yl (a) 3745 x + 1172 y-5 (b) 192876 x + 1929 18 y = 10 In those cases where you think that nopair can exist, give a dear reason why notExplanation / Answer
Using Eulid's algorithm to find g.c.d of
a) 3745 and 1172
since 3745=1172*3+229
1172=229*5+27
229=27*8+13
27=13*2+1
13=13*1+0
therfore
g.c.d(3745,1172)=1
Now
1=27-(13*2)
=27-(229-27*8)*2
=27-(229*2)+27*16
=27*17-229*2
=(1172-229*5)*17-229*2
=1172*17-229*85-229*2
=1172*17-229*87
=1172*17-(3745-1172*3)*87
=1172*17-3745*87+1172*261
=1172(278)+3745(-87)
therfore Here x=-87 and y=278 only if
g.c.d(3745,1172)=1
therfore there is no pair of x and y such that 3745x+1172y=5
b) to find g.c.d of 192876 and 192918
since
192918=192876*1+42
192876=42*4592+12
42=12*3+6
12=6*2+0
therfore g.c.d(192876,192918)=6
Back substitution
6=42-(12*3)
42-(192876-42*4592)*3
42-(192876*3+42*13776
=42*13777-192876*3
=(192918-192876*1)*1377-192876*3
=192918*13777-192876*1377-192876*3
6=192918(13777)-192876(13780)
x=13777 and y=13780
since g.c.d is 6 therfore there is no pais such that
192876x+192918y=10
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.