Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Test scores in STAT 1342 course are assumed to be normally distributed with unkn

ID: 3157904 • Letter: T

Question

Test scores in STAT 1342 course are assumed to be normally distributed with unknown population summaries. A sample of 16 students was selected for a study of variability in the test scores. the sample summaries obtained from the sample are shown below. [Sample Mean] = 73.7 and [Sample Standard Deviation] = 8.0. A. Estimate the population variance with the 99 % confidence. Round the confidence limits to the 2nd decimal place. B. At the 5% significance level, do we have sufficient evidence that the population variance exceeded 30? Show the following elements of your decision. Critical Value(s) = Test Statistic = Rejection Rule states: Decision: YES (Reject) or NO (Do Not Reject) C. At the 5% significance level, do we have sufficient evidence that the population variance was below 128? Show the following elements of your decision. Critical Value(s) = Test Statistic = Rejection Rule: Reject the null hypothesis if... Decision: YES (Reject) or NO (Do Not Reject)

Explanation / Answer

a)

As              
              
df = n - 1 =    15          
alpha = (1 - confidence level)/2 =    0.005          
              
Then the critical values for chi^2 are              
              
chi^2(alpha/2) =    32.80132065          
chi^2(alpha/2) =    4.600915572          
              
Thus, as              
              
lower bound = (n - 1) s^2 / chi^2(alpha/2) =    29.26711428          
upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    208.6541222          
              
Thus, the confidence interval for the variance is              
              
(   29.26711428   ,   208.6541222   ) [ANSWER]

*******************************

b)

Formulating the null and alternative hypotheses,              
              
Ho:   sigma^2   <=   30
Ha:    sigma^2   >   30
              
As we can see, this is a    right   tailed test.      
              
Thus, getting the critical chi^2, as alpha =    0.05   ,      
alpha =    0.05          
df = N - 1 =    15          
chi^2 (crit) =    24.99579014   [ANSWER, CRITICAL VALUE]     

*********
              
Getting the test statistic, as              
s = sample standard deviation =    8          
sigmao = hypothesized standard deviation =    5.477225575          
n = sample size =    16          
              
              
Thus, chi^2 = (N - 1)(s/sigmao)^2 =    32   [ANSWER, TEST STATISTIC]
      
***********

We reject Ho when chi^2 > 24.996 [ANSWER]

************              

As chi^2 < 24.996, then we FAIL TO REJECT THE NULL HYPOTHESIS.   [ANSWER: NO]          

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote