Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A company is trying out a new marketing plan. Prior to the new campaign, store s

ID: 3160321 • Letter: A

Question

A company is trying out a new marketing plan. Prior to the new campaign, store sales were $5000 per week. The new method is trialled in 81 randomly selected stores and results in mean sales of $5245 and standard deviation of $1100.

(a) Is there evidence at the 0.05 level of significance to conclude that the new marketing plan works? Show your working and clearly indicate the assumptions/conditions required to perform the test.

(b) How large a sample must be selected if the company wants to be 95% confident that the maximum error of estimation is $154.

Explanation / Answer

a)

Here, we assume that the underlying distribution is approximately normally distributed and has no outliers.

Formulating the null and alternative hypotheses,              
              
Ho:   u   <=   5000  
Ha:    u   >   5000  
              
As we can see, this is a    right   tailed test.      
              
Thus, getting the critical t,              
df = n - 1 =    80          
tcrit =    +   1.664124579      
              
Getting the test statistic, as              
              
X = sample mean =    5245          
uo = hypothesized mean =    5000          
n = sample size =    81          
s = standard deviation =    1100          
              
Thus, t = (X - uo) * sqrt(n) / s =    2.004545455          
              
Also, the p value is              
              
p =    0.02419743          
              
As t > 1.664, and P < 0.05, we   REJECT THE NULL HYPOTHESIS.          

Hence, there is significant evidence that the new marketing plan works. [CONCLUSION]

***********************************

b)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.025  
      
Using a table/technology,      
      
z(alpha/2) =    1.959963985  
      
Also,      
      
s = sample standard deviation =    1100  
E = margin of error =    154  
      
Thus,      
      
n =    195.992797  
      
Rounding up,      
      
n =    196   [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote