Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider the Costello Music Company problem and its quarterly sales data follow.

ID: 3244567 • Letter: C

Question

Consider the Costello Music Company problem and its quarterly sales data follow. PianoSales.xls

Use the following dummy variables to develop an estimated regression equation to account for any seasonal and linear trend effects in the data:

Qtr1=1 if Quarter 1, =0 otherwise;

Qtr2=1 if Quarter 2, 0 otherwise;

Qtr3=1 if Quarter 3, 0 otherwise.

For four quarters, you need these 3 dummy variables (binary)

Compute the quarterly forecasts for the next year, using the regression that you estimated.

Year Quarter Sales 1 1 4 2 2 3 1 4 5 2 1 6 2 4 3 4 4 14 3 1 10 2 3 3 5 4 16 4 1 12 2 9 3 7 4 22 5 1 18 2 10 3 13 4 35

Explanation / Answer

Answer:

Consider the Costello Music Company problem and its quarterly sales data follow. PianoSales.xls

Use the following dummy variables to develop an estimated regression equation to account for any seasonal and linear trend effects in the data:

Qtr1=1 if Quarter 1, =0 otherwise;

Qtr2=1 if Quarter 2, 0 otherwise;

Qtr3=1 if Quarter 3, 0 otherwise.

For four quarters, you need these 3 dummy variables (binary)

Compute the quarterly forecasts for the next year, using the regression that you estimated.

Regression Analysis

0.856

Adjusted R²

0.817

n

20

R

0.925

k

4

Std. Error

3.501

Dep. Var.

Sales

ANOVA table

Source

SS

df

MS

F

p-value

Regression

1,092.1000

4  

273.0250

22.27

3.64E-06

Residual

183.9000

15  

12.2600

Total

1,276.0000

19  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=15)

p-value

95% lower

95% upper

Intercept

7.1500

2.2827

3.132

.0068

2.2846

12.0154

Q1

-5.5875

2.2531

-2.480

.0255

-10.3898

-0.7852

Q2

-10.9250

2.2317

-4.895

.0002

-15.6818

-6.1682

Q3

-11.4625

2.2188

-5.166

.0001

-16.1918

-6.7332

t

0.9375

0.1384

6.774

6.27E-06

0.6425

1.2325

Predicted values for: Sales

95% Confidence Intervals

95% Prediction Intervals

Q1

Q2

Q3

t

Predicted

lower

upper

lower

upper

Leverage

1

0

0

21

21.250

16.385

26.115

12.341

30.159

0.425

0

1

0

22

16.850

11.985

21.715

7.941

25.759

0.425

0

0

1

23

17.250

12.385

22.115

8.341

26.159

0.425

0

0

0

24

29.650

24.785

34.515

20.741

38.559

0.425

The regression line is

Sales = 7.1500-5.5875*Q1-10.9250*Q2-11.4625*Q3+0.9375*t

Forecasts for next year,

For Q1=21.250

For Q2=16.850

For Q3=17.250

For Q4=29.650

Regression Analysis

0.856

Adjusted R²

0.817

n

20

R

0.925

k

4

Std. Error

3.501

Dep. Var.

Sales

ANOVA table

Source

SS

df

MS

F

p-value

Regression

1,092.1000

4  

273.0250

22.27

3.64E-06

Residual

183.9000

15  

12.2600

Total

1,276.0000

19  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=15)

p-value

95% lower

95% upper

Intercept

7.1500

2.2827

3.132

.0068

2.2846

12.0154

Q1

-5.5875

2.2531

-2.480

.0255

-10.3898

-0.7852

Q2

-10.9250

2.2317

-4.895

.0002

-15.6818

-6.1682

Q3

-11.4625

2.2188

-5.166

.0001

-16.1918

-6.7332

t

0.9375

0.1384

6.774

6.27E-06

0.6425

1.2325

Predicted values for: Sales

95% Confidence Intervals

95% Prediction Intervals

Q1

Q2

Q3

t

Predicted

lower

upper

lower

upper

Leverage

1

0

0

21

21.250

16.385

26.115

12.341

30.159

0.425

0

1

0

22

16.850

11.985

21.715

7.941

25.759

0.425

0

0

1

23

17.250

12.385

22.115

8.341

26.159

0.425

0

0

0

24

29.650

24.785

34.515

20.741

38.559

0.425

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote