Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Ackerman and Goldsmith (2011) found that students who studied text from printed

ID: 3386291 • Letter: A

Question

Ackerman and Goldsmith (2011) found that students who studied text from printed hardcopy had better scores than students who studied from text presented on a screen. In a related study, a professor noticed that several students in a large class had purchased the e-book version of the course textbook. For the final exam, the overall average for the entire class was µ=81.7, but the n=9 students who used e-books had a mean of M=77.2 with a standard deviation of s=5.7.

a) Is the sample sufficient to conclude that scores for students using e-books were significantly different from scores for the regular class? Use a two-tailed test with =.01.

b) Construct the 95% confidence interval to estimate the mean exam score if the entire population used e-books.

c) Write a sentence demonstrating how the results from the hypothesis test and the confidence interval would appear in a research report.

Explanation / Answer

a)

Formulating the null and alternative hypotheses,              
              
Ho:   u   =   81.7  
Ha:    u   =/   81.7  
              
As we can see, this is a    two   tailed test.      
              
Thus, getting the critical t,              
df = n - 1 =    8          
tcrit =    +/-   3.355387331      
              
Getting the test statistic, as              
              
X = sample mean =    77.2          
uo = hypothesized mean =    81.7          
n = sample size =    9          
s = standard deviation =    5.7          
              
Thus, t = (X - uo) * sqrt(n) / s =    -2.368421053          
              
Also, the p value is              
              
p =    0.045358069          
              
As |t| < 3.355, and P > 0.01, we   FAIL TO REJECT THE NULL HYPOTHESIS.          

Thus, there is no significant evidence that scores for students using e-books were significantly different from scores for the regular class. [CONCLUSION]

*************************

b)

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    77.2          
t(alpha/2) = critical t for the confidence interval =    2.306004135          
s = sample standard deviation =    5.7          
n = sample size =    9          
df = n - 1 =    8          
Thus,              
Margin of Error E =    4.381407857          
Lower bound =    72.81859214          
Upper bound =    81.58140786          
              
Thus, the confidence interval is              
              
(   72.81859214   ,   81.58140786   ) [ANSWER]

***************************

c)

For the hypothesis test:

There is no significant evidence that scores for students using e-books were significantly different from scores for the regular class.   

For the confidence interval:

We are 95% confident that the true mean of the scores of those who used e-books is between 72.82 and 81.58.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote