The following data are the monthly salaries y and the grade point averages x for
ID: 3436551 • Letter: T
Question
The following data are the monthly salaries y and the grade point averages x for students who obtained a bachelor's degree in business administration.
The estimated regression equation for these data is = -1,100 + 1,484.4x and MSE =451,211.
a. Develop a point estimate of the starting salary for a student with a GPA of 3.0 (to 1 decimal).
$
b. Develop a 95% confidence interval for the mean starting salary for all students with a 3.0 GPA (to 2 decimals).
$ ( , )
c. Develop a 95% prediction interval for Ryan Dailey, a student with a GPA of 3.0 (to 2 decimals).
$ ( , )
Explanation / Answer
The estimated regression equation for these data is = -1,100 + 1,484.4x and MSE =451,211.
Excel used
Regression Analysis
r²
0.439
n
6
r
0.662
k
1
Std. Error
671.722
Dep. Var.
Monthly Salary ($)
ANOVA table
Source
SS
df
MS
F
p-value
Regression
1,410,156.2500
1
1,410,156.2500
3.13
.1518
Residual
1,804,843.7500
4
451,210.9375
Total
3,215,000.0000
5
Regression output
confidence interval
variables
coefficients
std. error
t (df=4)
p-value
95% lower
95% upper
Intercept
-1,100.0000
2,700.8474
-0.407
.7047
-8,598.7546
6,398.7546
GPA
1,484.3750
839.6530
1.768
.1518
-846.8753
3,815.6253
Predicted values for: Monthly Salary ($)
95% Confidence Interval
95% Prediction Interval
GPA
Predicted
lower
upper
lower
upper
Leverage
3
3,353.125
2,460.324
4,245.926
1,285.440
5,420.810
0.229
a. Develop a point estimate of the starting salary for a student with a GPA of 3.0 (to 1 decimal).
$3353.1
b. Develop a 95% confidence interval for the mean starting salary for all students with a 3.0 GPA (to 2 decimals).
$ (2460.32 , 4245.93)
c. Develop a 95% prediction interval for Ryan Dailey, a student with a GPA of 3.0 (to 2 decimals).
$ ( 1285.44, 5420.81)
Regression Analysis
r²
0.439
n
6
r
0.662
k
1
Std. Error
671.722
Dep. Var.
Monthly Salary ($)
ANOVA table
Source
SS
df
MS
F
p-value
Regression
1,410,156.2500
1
1,410,156.2500
3.13
.1518
Residual
1,804,843.7500
4
451,210.9375
Total
3,215,000.0000
5
Regression output
confidence interval
variables
coefficients
std. error
t (df=4)
p-value
95% lower
95% upper
Intercept
-1,100.0000
2,700.8474
-0.407
.7047
-8,598.7546
6,398.7546
GPA
1,484.3750
839.6530
1.768
.1518
-846.8753
3,815.6253
Predicted values for: Monthly Salary ($)
95% Confidence Interval
95% Prediction Interval
GPA
Predicted
lower
upper
lower
upper
Leverage
3
3,353.125
2,460.324
4,245.926
1,285.440
5,420.810
0.229
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.