Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Suppose that we will take a random sample of size n from a population having mea

ID: 3437441 • Letter: S

Question

Suppose that we will take a random sample of size n from a population having mean u and standard deviation o. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean x.

a. u = 10   o = 2 , n = 25

b. u = 500 , o = .5 , n = 100

c. u = 3 , o = .1 , n = 4

d. u = 100 , o = 1, n= 1,600

&

Find an interval that contains (approximately or exactly) 99.73 percent of all the possible sample means, In which cases must we assume that the population is normally distributed? Why?

Explanation / Answer

Note that the mean, variance, and standard deviation of the sampling distribution of the sample mean x is given by

u(X) = u
variance(X) = sigma^2 / n
sigma(X) = sigma / sqrt(n)

Thus:

a: u(X) = 10, variance(X) = 0.16, sigma(X) = 0.4
b: u(X) = 500, variance(X) = 0.0025, sigma(X) = 0.05
c: u(X) = 10, variance(X) = 0.0025, sigma(X) = 0.05
d: u(X) = 10, variance(X) = 0.000625, sigma(X) = 0.025

******************

A. As n = 25 < 30, we assume t distribution only.

Note that              
              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
              
X = sample mean =    10          
t(alpha/2) = critical z for the confidence interval =    3.344721741          
s = sample standard deviation =    2          
n = sample size =    25          
              
Thus,              
              
Lower bound =    8.662111303          
Upper bound =    11.3378887          
              
Thus, the confidence interval is              
              
(   8.662111303   ,   11.3378887   )

***********************

B.

As n = 100 > 30, then we can assume z distribution.

Note that              
              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
              
X = sample mean =    500          
z(alpha/2) = critical z for the confidence interval =    2.999976993          
s = sample standard deviation =    0.5          
n = sample size =    100          
              
Thus,              
              
Lower bound =    499.8500012          
Upper bound =    500.1499988          
              
Thus, the confidence interval is              
              
(   499.8500012   ,   500.1499988   )

******************

C. As n = 4 < 30, we only use t distribution.

USING T DISTRIBUTION              
              
Note that              
              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
              
X = sample mean =    3          
t(alpha/2) = critical z for the confidence interval =    9.218701822          
s = sample standard deviation =    0.1          
n = sample size =    4          
              
Thus,              
              
Lower bound =    2.539064909          
Upper bound =    3.460935091          
              
Thus, the confidence interval is              
              
(   2.539064909   ,   3.460935091   )

***************************

D. As n = 1600 > 30, then we can assume z distribution.

USING Z DISTRIBUTION              
              
Note that              
              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
              
X = sample mean =    100          
z(alpha/2) = critical z for the confidence interval =    2.999976993          
s = sample standard deviation =    1          
n = sample size =    1600          
              
Thus,              
              
Lower bound =    99.92500058          
Upper bound =    100.0749994          
              
Thus, the confidence interval is              
              
(   99.92500058   ,   100.0749994   )

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote