Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 93 Fill in the table below with estimates for the space and time complex

ID: 3811596 • Letter: P

Question

Problem 93 Fill in the table below with estimates for the space and time complexity of the algorithms listed in first column. Justify your answers.

MEMOIZED-CUT-ROD-AUX.p; n; r/ 1

if r[n] >= 0

     return r [n]

if n == 0

    q = 0

else q = -infinity

   for i = 1 to n

         q = max(q.p[i] + MEMOIZED-CUT-ROD-AUX (p,n-i,r))

r[n] = q

return q

ExtendedBottomUpCutRod (p,n)

let r[0...n] and s[0..n] be new arrays

r[0] = 0

for j = 1 to n

      q = - infinity

      for i = 1 to j

           if q < p[i] + r[ j - i ]

                  q = p[i] + r [j - i]

                  s[j] = i

          r[j] = q

return r and s

--------

Cut_Rod(p,n)

if n ==0

    return 0

q = -infinity

for i = 1 to n

      q = max(q,p[i] + Cut-Rod(p,n-i))

return q

---

Bottom-Up-Cut-Rod(p,n)

let r[0..n] be a new array

r[0] = 0

for j = 1 to n

      q = - infinity

      for i = 1 to j

               q = max(q,p[i] + r[ j - i])

      r[j] = q

return r[n]

Space Time CutRod(p,n) MemoizedCutRod(p,n,r) BottomUpCutRod(p,n) ExtendedBottomUpCutRod(p,n)

Explanation / Answer

Space Time CutRod(p,n) Depth of recursion N Exponential (2^n) MemoizedCutRod(p,n,r) O(N) + Depth of recursion N O(N) BottomUpCutRod(p,n) O(N) O(N2) ExtendedBottomUpCutRod(p,n) O(2N) O(N2)

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote