\'\'\'Provides basic operations for Binary Search Trees using a tuple representa
ID: 3812869 • Letter: #
Question
'''Provides basic operations for Binary Search Trees using
a tuple representation. In this representation, a BST is
either an empty tuple or a length-3 tuple consisting of a data value,
a BST called the left subtree and a BST called the right subtree
'''
def is_bintree(T):
if type(T) is not tuple:
return False
if T == ():
return True
if len(T) != 3:
return False
if is_bintree(T[1]) and is_bintree(T[2]):
return True
return False
def bst_min(T):
if T == ():
return None
if not T[1]:
return T[0]
return bst_min(T[1])
def bst_max(T):
if T == ():
return None
if not T[2]:
return T[0]
return bst_max(T[2])
def is_bst(T):
if not is_bintree(T):
return False
if T == ():
return True
if not is_bst(T[1]) or not is_bst(T[2]):
return False
if T[1] == () and T[2] == ():
return True
if T[2] == ():
return bst_max(T[1]) < T[0]
if T[1] == ():
return T[0] < bst_min(T[2])
return bst_max(T[1]) < T[0] < bst_min(T[2])
def bst_search(T,x):
if T == ():
return T
if T[0] == x:
return T
if x < T[0]:
return bst_search(T[1],x)
return bst_search(T[2],x)
def bst_insert(T,x):
if T == ():
return (x,(),())
elif x < T[0]:
return (T[0],bst_insert(T[1],x),T[2])
else:
return (T[0],T[1],bst_insert(T[2],x))
def delete_min(T):
if T == ():
return T
if not T[1]:
return T[2]
else:
return (T[0],delete_min(T[1]),T[2])
def bst_delete(T,x):
assert T, "deleting value not in tree"
if x < T[0]:
return (T[0],bst_delete(T[1],x),T[2])
elif x > T[0]:
return (T[0],T[1],bst_delete(T[2],x))
else:
# T[0] == x
if not T[1]:
return T[2]
elif not T[2]:
return T[1]
else:
return (bst_min(T[2]),T[1],delete_min(T[2]))
def print_bintree(T,indent=0):
if not T:
print('*')
return
else:
print(T[0])
print(' '*(indent + len(T[0])-1)+'---', end = '')
print_bintree(T[1],indent+3)
print(' '*(indent + len(T[0])-1)+'---', end = '')
print_bintree(T[2],indent+3)
def print_func_space(x):
print(x,end=' ')
def inorder(T,f):
if not is_bst(T):
return
if not T:
return
inorder(T[1],f)
f(T[0])
inorder(T[2],f)
# provide implementations for the functions below,
# i.e., replace all the pass statements in the functions below.
# Then add tests for these functions in the block
# that starts "if __name__ == '__main__':"
def preorder(T,f):
pass
def postorder(T,f):
pass
def tree_height(T):
# Empty tree has height -1
pass
def balance(T):
# returns the height of the left subtree of T
# minus the height of the right subtree of T
# i.e., the balance of the root of T
pass
def minBalance(T):
# returns the minimum value of balance(S) for all subtrees S of T
pass
def maxBalance(T):
# returns the maximum value of balance(S) for all subtrees S of T
pass
def is_avl(T):
# Returns True if T is an AVL tree, False otherwise
# Hint: use minBalance(T) and maxBalance(T)
pass
# Add tests for the above seven functions below
if __name__ == '__main__':
K = ()
for x in ['Joe','Bob', 'Phil', 'Paul', 'Marc', 'Jean', 'Jerry', 'Alice', 'Anne']:
K = bst_insert(K,x)
print(' Tree elements in sorted order ')
inorder(K,print_func_space)
print()
print(' Print full tree ')
print_bintree(K)
print(" Delete Bob and print tree ")
K = bst_delete(K,'Bob')
print_bintree(K)
print()
print(" Print subtree at 'Phil' ")
print_bintree(bst_search(K,'Phil'))
print()
# TEST CODE FOR THE FUNCTIONS YOU IMPLEMENTED GOES BELOW:
Explanation / Answer
sbit DB7 = P1^7;
sbit DB6 = P1^6;
sbit DB5 = P1^5;
sbit DB4 = P1^4;
sbit RS = P1^3;
sbit E = P1^2;
sbit clear = P2^4;
sbit souse = P2^5;
sbit left = P2^6;
sbit right = P2^7;
void returnHome(void);
void entryModeSet(bit id, bit s);
void showOnOffControl(bit display, bit cursor, bit blinking);
void cursorOrDisplayShift(bit sc, bit rl);
void functionSet(void);
void setDdRamAddress(char address);
void sendChar(char c);
void sendString(char* str);
bit getBit(char c, char bitNumber);
void delay(void);
void main(void) {
functionSet();
entryModeSet(1, 0); // increment and no shift
displayOnOffControl(1, 1, 1); // show on, pointer on and blinking on
sendString("EdSim51 LCD Module Simulation");
setDdRamAddress(0x40); // set address to start out of second line
sendString("Based on Hitachi HD44780");
// The program will be controlled via a number of the switches on port a pair of.
// If switch five is closed the pointer returns home (address 0).
// Otherwise, switches six and seven ar scan - if each switches ar open or each switches
// ar closed, the show doesn't shift.
// If switch seven is closed, unceasingly shift left.
// If switch six is closed, unceasingly shift right.
whereas (1)
else zero && right == 1) {
cursorOrDisplayShift(1, 0); // shift show left
}
else if (left == one && right == 0) {
cursorOrDisplayShift(1, 1); // shift show right
}
}
}
}
// LCD Module directions -------------------------------------------
// to grasp why the pins ar being set to the actual values within the functions
// below, see the instruction set.
// A full rationalization of the LCD Module: HD44780.pdf
void returnHome(void)
void entryModeSet(bit id, bit s)
void showOnOffControl(bit display, bit cursor, bit blinking)
void cursorOrDisplayShift(bit sc, bit rl)
void functionSet(void) operate set is really sent double. Why? See 4-bit operation
// on pages thirty-nine and forty two of HD44780.pdf.
DB7 = 0;
DB6 = 0;
DB5 = 1;
DB4 = 0;
RS = 0;
E = 1;
E = 0;
delay();
E = 1;
E = 0;
DB7 = 1;
E = 1;
E = 0;
delay();
}
void setDdRamAddress(char address)
void sendChar(char c)
// -- finish of LCD Module directions
// --------------------------------------------------------------------
void sendString(char* str) {
int index = 0;
whereas (str[index] != 0)
}
bit getBit(char c, char bitNumber) come back (c >> bitNumber) & 1;
}
void delay(void)
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.