Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

THIS IS A JAVA PROBLEM. LAB 1b: Triple Call Counter [ TripleCallCounter.java ] 1

ID: 3887519 • Letter: T

Question

THIS IS A JAVA PROBLEM.

LAB 1b: Triple Call Counter [ TripleCallCounter.java ] 15 points. The following recursive equation: with the following base case conditions: T(O) 0 T(1) = 1 has a programming solution that works very similar to the structure of the solveTowers) algorithm from 1a. It too has three recursive calls, and a base case that performs a single command when it is used. The actual solution to this recursive equation is the found in the following way: T(3) =T(3-1)+T(1) + T(3-1)=T(2) + T(1) + T(2) = 3 + 1 + 3 T(4) =T(4-1)+T(1) + T(4-1)=T(3) + T(1) + T(3) = 7 + 1 + 7 T(5)-T(5-1) + T(1) + T(5- 1)-T(4) + T(1) +T(4) = 15 + 1 + 15

Explanation / Answer

Please find my answer.

Please let me know in case of any issue.

public class TripleCallCounter {

  

   static int solveTripleCounter(int n) {

      

       if(n < 2)

           return n;

      

       int nMinus1 = solveTripleCounter(n-1); // T(n-1)

      

       return 2*nMinus1 + 1; // T(n-1) + T(n-1) + T(1)

   }

  

   public static void main(String[] args) {

       System.out.println(solveTripleCounter(4));

   }

}