Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Half lite and rate constant Use data from Figure to evaluate the (a) half-life a

ID: 550387 • Letter: H

Question

Half lite and rate constant Use data from Figure to evaluate the (a) half-life and (b) rate constant for the first-order decomposition of N2Os at 67°C: N2Os(g)2 NO2(g)202(g) (a) When the molarity of N2Os drops to one-half its initial value, also drops to one-half its initial value because partial pressure and molarity are proportional. As the pressure drops from 800 mmHg to 400 mmHg, one-half the N20s originally present is consumed. This occurs in about 120 s, thus t12 120 s. The pressure drops to 200 mmHg at about 240 s: 2 x t/2 240 s. Again, t120s, confirming that the decomposition of N2Os is first order 500 200 (b) We determine the rate constant k using t= 120 s in rate Equation 0.693 0.693 120 s 5.8 × 10-3 s-1 57 1/2

Explanation / Answer

a) The rate law of the reaction is

ln(Ao/At) = kt

We know the value of k is equal to 0.693/120 and At = 1/16 Ao, susbtituting the values we get

ln(Ao/(Ao/16)) = 0.693/120 * t

ln(16) = 0.693/120 * t

t = 4 * 120 = 480 seconds

b)

10 min = 10 * 60 = 600 seconds

ln(Ao/At) = kt

ln(Ao/At) = 0.693/120 * 600

ln(Ao/At) = 5 * 0.693

At = Ao/32 = 0.15g

Hence N2O5 left after 10 minutes is equal to 0.15g

c)

Concentration left after 6 minutes will be

ln(Ao/At) = 0.693/120 * 6 * 60

At = Ao/8 = 4.80/8 = 0.60 grams

Hence the pressure of N2O5 will be dropped to 800/2^3 = 100 mm Hg

Pressure of NO2 will be 700* 2 = 1400 mm Hg

Pressure of O2 will be 700/2 = 350 mm Hg

Total Pressure = 1850 mm Hg

For N2O5 alone, 100 mm Hg