Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Table 12-1 Activity coefficients for aqueous solutions at 25°C\" Ion size Ionic

ID: 557920 • Letter: T

Question

Table 12-1 Activity coefficients for aqueous solutions at 25°C" Ion size Ionic strength ( M) Ion (, pm) 0.001 0.005 0.01 0.05 0.1 Activity coefficient () 9000.967 0.933 0.914 0.86 0.83 8000.966 0.931 0.912 0.85 0.82 7000.965 0.930 0.909 0.845 0.81 Charge (z) = ±1 CH-CHCH2C0%, (CHJ2CHCH2C0%, (CH,CHJ4N+, (C3H7)2NH3 600 0.965 0.929 0.907 0.835 0.80 500 0.964 0.928 0.904 0.83 0.79 Co(NH3)4(NO2):, CH3C0%, CICH2C0%, (CH3)4N (CH3CH2)2NH2, H2NCH2CO2 H3NCH CO,H, (CH3)3NH+, CH3CH2NH3 OH , F , SCN", OCN , HS , ClO3, CIO4, BrO3, IO4, MnO4, HCO7, H2citrate, CHzNHj, (CH32NHz K, Cl, Br , I, CN, NO2, NO3 Rbf, Cs*, NH, TI, Ag 450 0.964 0.928 0.902 0.82 0.775 400 0.964 0.927 0.901 0.815 0.77 350 0.964 0.926 0.900 0.81 0.76 300 0.964 0.925 0.899 0.805 0.755 250 0.964 0.924 0.898 0.80 0.75 Activity coefficient (Y) 800 0.872 0.755 0.69 0.52 0.45 7000.872 0.755 0.685 0.50 0.425 Charge (z) = ±2 Mg2*, Be2+ Ca2+, Cu2+, Zn2+, Sn2+, Mn2+, Fe2+, Ni2+, Co2+, c,H(CO22 6000.870 0.749 0.675 0.485 0.40:5 Sr*, Ba2+, Cd2+, Hg2+, S2-, S,O2 , woi, H,C(CO2)2 (CH2CO22, (CHOHCO2)2 500 0.868 0.744 0.67 0.465 0.38 Hcitrate 450 0.867 0.742 0.665 0.455 0.37 400 0.867 0.740 0.660 0.445 0.355

Explanation / Answer

Determine the activity coefficient for Fe2+ ions in a solution with an ionic strength of 0.020 M.

First

IS = 0.02 M is not found in the table; therefore apply Debye Huckel equation

Activity of X = x * [X]

Where:

Activity coefficient () of “x”

[X] = molar concentration concentration of X

Note that Activity coefficient () depends on

Recall that:

-log() = 0.51*(Zi^2)*sqrt(I.S.) / ( 1 + ( * sqrt(I.S)/305))

Where

i = activity coefficient for species “i”

i = theoretical diameter in pm (10^-12 m)

Zi = Charge of ion

I.S. = ionic Strength (usually used as as well)

alpha for Fe+2 =600 pm, Z = +2; IS = 0.02

-log(-Fe+2) = 0.51*(2^2)*sqrt(0.02) / ( 1 + (600 * sqrt(0.02)/305))

-Fe+2 exp(-0.2257) = 0.79795

-Fe+2 = 0.79795

which makes sense since it is btween 0.87 and 0.749 ( table)