An object has a velocity v 0 ( t ) = (3.00 m/s) i + (1.00 m/s) j at time t = 0.0
ID: 1591455 • Letter: A
Question
An object has a velocity v0(t) = (3.00 m/s) i + (1.00 m/s) j at time t = 0.00 s. The acceleration of the object is a(t) = (2.00 m/s3)t i + (1.00 m/s4)t2 j . If the object is located at r0(t) = (1.00 m) i + (-1.00 m) j at time t = 0.00 s., what is the position of the object at time t = 1.00 s?
choices :
(5.32 m) i + (1.34 m) j
(4.33 m) i + (0.0833 m) j
(2.72 m) i + (6.14 m) j
(0.333 m) i + (0.0833 m) j
(2.00 m) i + (1.00 m) j
choices :
(5.32 m) i + (1.34 m) j
(4.33 m) i + (0.0833 m) j
(2.72 m) i + (6.14 m) j
(0.333 m) i + (0.0833 m) j
(2.00 m) i + (1.00 m) j
Explanation / Answer
Vo (t) = 3 i^ + 1 j^
a(t) = 2 t i^ + 1 t2 j^
dV(t)/dt = 2 t i^ + 1 t2 j^
V(t) = t2 i^ + (t3/3) j^ + C
at t = 0
V(0) = C
3 i^ + 1 j^ = C
so V(t) = t2 i^ + (t3/3) j^ + 3 i^ + 1 j^
dx(t)/dt = t2 i^ + (t3/3) j^ + 3 i^ + 1 j^
X(t) = (t3/3) i^ + (t4/12) j^ + 3t i^ + t j^ + D
at t = 0
X(0) = D
D = 1 i^ - 1 j^
X(t) = (t3/3) i^ + (t4/12) j^ + 3t i^ + t j^ + 1 i^ - 1 j^
at t = 1
X(1) = (13/3) i^ + (14/12) j^ + 3 i^ + j^ + i^ - j^
X(1) = 4.33 i^ + 0.0833 j^
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.