Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

a. Based on the table above, construct an equal-weighted (50/50) portfolio of In

ID: 2619994 • Letter: A

Question

a. Based on the table above, construct an equal-weighted (50/50) portfolio of Investments B and C. What is the expected rate of return and standard deviation of the portfolio?

b. Now construct an equal-weighted (50/50) portfolio of Investments B and D. What is the expected rate of return and standard deviation of the portfolio?

Part A:

   E(R) for BC portfolio: Note: format answer is 12.3%

   SD for BC portfolio: Note: format answer is 1.2%

Part B:

   E(R) for BD portfolio: Note: format answer is 12.3%

   SD for BD portfolio: Note: format answer is 1.2%

conomic State Probability B C D Very poor 0.1 30% -25% 15% Poor 0.2 20% -5% 10% Average 0.4 10% 15% 0% Good 0.2 0% 35% 25% Very good 0.1 -10% 55% 35%

Explanation / Answer

A

B

C=A*B

DEV=(B-10)

X=DEV^2

Y=X*A

Probability

Return of B in percentage

Probabity*Return

Deviation from expected

Deviation Squared

Deviation squared*Probability

0.1

     30.00

               3.00

               20.00

           400

              40

0.2

     20.00

               4.00

               10.00

           100

              20

0.4

     10.00

               4.00

                      -  

               -  

               -  

0.2

          -  

                   -  

             (10.00)

           100

              20

0.1

    (10.00)

            (1.00)

             (20.00)

           400

              40

SUM

                  10

SUM

           120

VARIANCE

120

STANDARD DEVIATION

10.95445

(Square Root (Variance)

Expected Return of B=10%

Standard Deviation of return of B=10.95%

D

E

F=D*E

DEV=(E-15)

X=DEV^2

Y=X*A

Probability

Return of C in percentage

Probabity*Return

Deviation from expected

Deviation Squared

Deviation squared*Probability

0.1

    (25.00)

            (2.50)

             (40.00)

         1,600

           160

0.2

      (5.00)

            (1.00)

             (20.00)

            400

              80

0.4

     15.00

               6.00

                      -  

                -  

               -  

0.2

     35.00

               7.00

               20.00

            400

              80

0.1

     55.00

               5.50

               40.00

         1,600

           160

SUM

            15.00

SUM

           480

VARIANCE

            480

STANDARD DEVIATION

21.9089

(Square Root (Variance)

Expected Return of C=15%

Standard Deviation of return of C=21.91%

G

H

I=G*H

DEV=(H-12)

X=DEV^2

Y=X*A

Probability

Return of D

Probabity*Return

Deviation from expected

Deviation Squared

Deviation squared*Probability

0.1

     15.00

               1.50

                 3.00

           9.00

          0.90

0.2

     10.00

               2.00

               (2.00)

           4.00

          0.80

0.4

          -  

                   -  

             (12.00)

      144.00

        57.60

0.2

     25.00

               5.00

               13.00

      169.00

        33.80

0.1

     35.00

               3.50

               23.00

      529.00

        52.90

SUM

            12.00

SUM

     146.00

VARIANCE

            146

STANDARD DEVIATION

12.08305

(Square Root (Variance)

Expected Return of D=12%

Standard Deviation of return of D=12.08%

If w1, w2 , are weight in the portfolio for assets 1 and 2

Then,w1+w2=1

R1, R2 are the return of the assets 1and2

S1, S2 are the standard deviation of the assets 1, 2

Portfolio Return=w1R1+w2R2

PortfolioVariance=(w1^2)*(S1^2)+(w2^2)(S2^2)+2w1w2*Cov(1,2)

Cov(1,2)=Covariance of returns of asset1 and asset2

Portfolio Standard Deviation =Square root of Portfolio variance

a.PORTFOLIO OF B AND C

Return of assetB=Rb=10%%

Return of assetC=Rc=15%

Standard deviation of asset B=Sb=10.95%%

Standard deviation of asset C=Sc=21.91%

Correlation of asset Band C=0

Covariance(1,2)=0

wb=wc=0.5

Portfolio Return;

0.5*10+0.5*15=12.5%

Portfolio Variance=(0.5^2)*(10.95^2)+(0.5^2)*(21.91^2)=149.9877

Portfolio Standard Deviation=Square root of Variance=(149.9877^0.5)= 12.25%

b..PORTFOLIO OF B AND D

Return of assetB=Rb=10%

Return of assetD=Rd=12%

Standard deviation of asset B=Sb=10.95%

Standard deviation of asset D=Sd=12.08%

Correlation of asset Band C=0

Covariance(1,2)=0

wb=wd=0.5

Portfolio Return;

0.5*10+0.5*12=11%

Portfolio Variance=(0.5^2)*(10.95^2)+(0.5^2)*(12.08^2)=66.45723

Portfolio Standard Deviation=Square root of Variance=(66.45723^0.5)= 8.15%

ExpectedReturn(E(R)

Std Deviation

a) Portfolio of B and C

12.50%

12.25%

b) Portfolio of B and D

11%

8.15%

A

B

C=A*B

DEV=(B-10)

X=DEV^2

Y=X*A

Probability

Return of B in percentage

Probabity*Return

Deviation from expected

Deviation Squared

Deviation squared*Probability

0.1

     30.00

               3.00

               20.00

           400

              40

0.2

     20.00

               4.00

               10.00

           100

              20

0.4

     10.00

               4.00

                      -  

               -  

               -  

0.2

          -  

                   -  

             (10.00)

           100

              20

0.1

    (10.00)

            (1.00)

             (20.00)

           400

              40

SUM

                  10

SUM

           120

VARIANCE

120

STANDARD DEVIATION

10.95445

(Square Root (Variance)

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at drjack9650@gmail.com
Chat Now And Get Quote