Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Two of the following statements are true. Select the true statements. 5. If \\(f

ID: 2905540 • Letter: T

Question

Two of the following statements are true. Select the true statements.

5.

If (f(x) = (5-x) sqrt[3]{x-1}), find ( f all ) critical numbers of (f(x).)

6.

For the function ({displaystyle f(x) = rac{x}{x^2+1} }), find the absolute maximum value (M) and the absolute minimum value (m) on the interval ({ displaystyle left[ 0, 3 ight]. })

7.

Verify that the function (f(x) = sqrt[3]{x} ) satisfies the hypotheses of the Mean Value Theorem on the interval ( [0,8] ) .
Then find all numbers (c) that satisfy the conclusion of the Mean Value Theorem.

8.

For the given function ( {displaystyle f(x) = x^{ rac{2}{3}} (x+4) }), which of the following statement is true?

Two of the following statements are true. Select the true statements.

5.

If (f(x) = (5-x) sqrt[3]{x-1}), find ( f all ) critical numbers of (f(x).)

6.

For the function ({displaystyle f(x) = rac{x}{x^2+1} }), find the absolute maximum value (M) and the absolute minimum value (m) on the interval ({ displaystyle left[ 0, 3 ight]. })

7.

Verify that the function (f(x) = sqrt[3]{x} ) satisfies the hypotheses of the Mean Value Theorem on the interval ( [0,8] ) .
Then find all numbers (c) that satisfy the conclusion of the Mean Value Theorem.

8.

For the given function ( {displaystyle f(x) = x^{ rac{2}{3}} (x+4) }), which of the following statement is true?

  

Two of the following statements are true. Select the true statements.

A) If (f'(x) > 0) for (x in (3, 6)), then (f(x) > 0 ) on ((3, 6)).


B) If (f'(x) < 0) for (x in (3, 6)), then (f(x)) is decreasing ((3, 6)).


C) If (f''(x) > 0) for (x in (3, 6)), then (y = f(x)) has a local minimum on ((3, 6)).


D) If (f''(x) > 0) for (x in (3, 6)), then (y = f(x)) is concave up on ((3, 6)).


E) If (f''(x) < 0) for (x in (3, 6)), then (y = f(x)) has an inflection point on ((3, 6)).


5.

If (f(x) = (5-x) sqrt[3]{x-1}), find ( f all ) critical numbers of (f(x).)

A) (x=2 ) only


B) (x=-1,1 ) only


C) (x=3, 5) only


D) (x=1, 5 ) only


E) (x=1, 2 ) only


6.

For the function ({displaystyle f(x) = rac{x}{x^2+1} }), find the absolute maximum value (M) and the absolute minimum value (m) on the interval ({ displaystyle left[ 0, 3 ight]. })

A) ({ displaystyle m= 0, M= rac{3}{10} })


B) ({ displaystyle m= - rac{1}{2}, M= rac{1}{10} })


C) ({ displaystyle m= 0, M= rac{1}{2} })


D) ({ displaystyle m= - rac{1}{2}, M= rac{3}{10} })


E) ({ displaystyle m= - rac{1}{2}, M= rac{1}{2} })


7.

Verify that the function (f(x) = sqrt[3]{x} ) satisfies the hypotheses of the Mean Value Theorem on the interval ( [0,8] ) .
Then find all numbers (c) that satisfy the conclusion of the Mean Value Theorem.

A) ({ displaystyle c= 0, c=2 })


B) ({ displaystyle c= rac{8sqrt{3}}{9} })


C) ({ displaystyle c= rac{64}{27} })


D) ({ displaystyle c= pm rac{8sqrt{3}}{9} })


E) (f(x)) does not satisfy the hypotheses


8.

For the given function ( {displaystyle f(x) = x^{ rac{2}{3}} (x+4) }), which of the following statement is true?

A) (f) is decreasing on ( {displaystyle left( -infty, - rac{8}{5} ight) cup left(0, infty ight) })


B) (f) is increasing on ( {displaystyle left( - rac{8}{5}, 0 ight) })


C) (f) is concave up on ( {displaystyle left(- infty, rac{4}{5} ight) })


D) (f) is concave down on ( {displaystyle left(- infty, 0 ight) cup left(0, rac{4}{5} ight) })


E) (f) is has an inflection point at ( x=0 ) and ( x = dfrac{4}{5} )

Explanation / Answer

1. Option C and D are True

Point for local minima is obtained if a function at a point xo gives f'(x) =0 and f"(x)>0

If f ''(x) exists at x0 and is positive, then f ''(x)is concave up at x0. If f ''(x0) exists and is negative, then f(x) is concue ave down at x0.

6.

f(x) = x/(x^2 +1)

f'(x) = 2x/(x^2+1)^2

f'(x) =0 ; x=0

Now we check f(x) at x=0 , 0, 3

f0) =0; f(3) =3/10

m=0 and M= 3/10

Option A

7. By mean value theorem f'(c) = f(b)-f(a)/(b-a) if f(x) is continous in the interval (a,b) and differentiable in the interval(a,b)

f(x) = sqrt(3x)

f'(c) = 1/2 sqrt3/sqrtc and {f(b)-f(a)}/(b-a) = sqrt(24)/8

1/2 sqrt3/sqrtc = sqrt(24)/8

solving for c we get c=0,2

option A

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote