Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Calculate the furture value of the folowing annurty streams recelved each year f

ID: 2814643 • Letter: C

Question

Calculate the furture value of the folowing annurty streams recelved each year for 4 years on the last day of each year if your investments pay 6 percent compounded annually b. $6, 000 recetved each quarter for 4 years on the last day of each quarter If your Investments pay 6 percent compounded c. $6,000 recelved each year for 4 years on the first day of each year if your Investments pay 6 percent compounded annually first day of each quarter if your investments pay 6 percent compounded quarterty For all requirements, do not round intermedilate calculations. Round your answers to 2 decimal places (e.g, 3216) a. Future value b. Future value a. Future value d. Future value Next >

Explanation / Answer

1.

FV = P x FVIFA (i, n)

P = periodic cash flow

i = Rate per period

n = No. of periods

a.

i = 6 %, n = 4 periods

FV = $ 6,000 x FVIFA (6 %, 4)

      $ 6,000 x 4.3746 = $ 26,247.60

b.

i = 6 % p.a. or 6 % /4 = 1.5 % p. q., n = 4x4 = 16 periods

FV = $ 6,000 x FVIFA (1.5 %, 16)

      $ 6,000 x 17.9324 = $ 107,594.40

c.

FV = (1+r) x FV of ordinary annuity

     = 1.06 x $ 26,247.60 = $ 27,822.46

d.

FV = (1+r) x FV of ordinary annuity

     = 1.015 x $ 107,594.40 = $ 109,208.32

Answer:

a.

Future value

$             26,247.60

b.

Future value

$           107,594.40

c.

Future value

$            27,822.46

d.

Future value

$           109,208.32

2.

Formula for Equal monthly payment (EMI) is:

EMI = P × r × (1 + r) n/ {(1 + r)n - 1 }

Where,

P = Principal = $ 160,000

R = rate of interest = 7 % or 0.07/12 p.a. or 0.005833333 p.m.

n = No. of periods = 15 years x 12 months = 180 periods

Equal monthly payment

= $ 160,000 x 0.005833333 x (1 + 0.005833333)180 / {(1 + 0.005833333) 180 -1}

= $ 160,000 x 0.005833333 x (1.005833333)180 / {(1.005833333) 180 -1}

= $ 160,000 x 0.005833333 x 2.848946731/ (2.848946731-1)

= $ 160,000 x 0.005833333 x 2.848946731/1.848946731

= $ 160,000 x 0.005833333 x 1.540848464

= $ 1,438.13

Answer:

Monthly payments are $ 1,438.13.

a.

Future value

$             26,247.60

b.

Future value

$           107,594.40

c.

Future value

$            27,822.46

d.

Future value

$           109,208.32

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote