The average person aged 15 or older gets 8 hours and 23 minutes (503 minutes) of
ID: 3324456 • Letter: T
Question
Explanation / Answer
a.
i.
Given that,
Standard deviation, =64
Sample Mean, X =500
Null, H0: =504
Alternate, H1: !=504
Level of significance, = 0.2
From Standard normal table, Z /2 =1.282
Since our test is two-tailed
Reject Ho, if Zo < -1.282 OR if Zo > 1.282
Reject Ho if (x-504)/64/(n) < -1.282 OR if (x-504)/64/(n) > 1.282
Reject Ho if x < 504-82.048/(n) OR if x > 504-82.048/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 53 then the critical region
becomes,
Reject Ho if x < 504-82.048/(53) OR if x > 504+82.048/(53)
Reject Ho if x < 492.73 OR if x > 515.27
Suppose the true mean is 500
Probability of Type I error,
P(Type I error) = P(Reject Ho | Ho is true )
= P(492.73 < x OR x >515.27 | 1 = 500)
= P(492.73-500/64/(53) < x - / /n OR x - / /n >515.27-500/64/(53)
= P(-0.827 < Z OR Z >1.737 )
= P( Z <-0.827) + P( Z > 1.737)
= 0.2041 + 0.0412 [ Using Z Table ]
= 0.245
ii.
Given that,
Standard deviation, =64
Sample Mean, X =500
Null, H0: =504
Alternate, H1: !=504
Level of significance, = 0.2
From Standard normal table, Z /2 =1.2816
Since our test is two-tailed
Reject Ho, if Zo < -1.2816 OR if Zo > 1.2816
Reject Ho if (x-504)/64/(n) < -1.2816 OR if (x-504)/64/(n) > 1.2816
Reject Ho if x < 504-82.022/(n) OR if x > 504-82.022/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 53 then the critical region
becomes,
Reject Ho if x < 504-82.022/(53) OR if x > 504+82.022/(53)
Reject Ho if x < 492.733 OR if x > 515.267
Implies, don't reject Ho if 492.733 x 515.267
Suppose the true mean is 500
Probability of Type II error,
P(Type II error) = P(Don't Reject Ho | H1 is true )
= P(492.733 x 515.267 | 1 = 500)
= P(492.733-500/64/(53) x - / /n 515.267-500/64/(53)
= P(-0.827 Z 1.737 )
= P( Z 1.737) - P( Z -0.827)
= 0.9588 - 0.2041 [ Using Z Table ]
= 0.755
For n =53 the probability of Type II error is 0.755
b.
Given that,
Standard deviation, =64
Sample Mean, X =500
Null, H0: =504
Alternate, H1: !=504
Level of significance, = 0.2
From Standard normal table, Z /2 =1.2816
Since our test is two-tailed
Reject Ho, if Zo < -1.2816 OR if Zo > 1.2816
Reject Ho if (x-504)/64/(n) < -1.2816 OR if (x-504)/64/(n) > 1.2816
Reject Ho if x < 504-82.022/(n) OR if x > 504-82.022/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 53 then the critical region
becomes,
Reject Ho if x < 504-82.022/(53) OR if x > 504+82.022/(53)
Reject Ho if x < 492.733 OR if x > 515.267
Implies, don't reject Ho if 492.733 x 515.267
Suppose the true mean is 506
Probability of Type II error,
P(Type II error) = P(Don't Reject Ho | H1 is true )
= P(492.733 x 515.267 | 1 = 506)
= P(492.733-506/64/(53) x - / /n 515.267-506/64/(53)
= P(-1.509 Z 1.054 )
= P( Z 1.054) - P( Z -1.509)
= 0.8541 - 0.0656 [ Using Z Table ]
= 0.789
For n =53 the probability of Type II error is 0.789
c.
Given that,
Standard deviation, =64
Sample Mean, X =500
Null, H0: =504
Alternate, H1: !=504
Level of significance, = 0.2
From Standard normal table, Z /2 =1.2816
Since our test is two-tailed
Reject Ho, if Zo < -1.2816 OR if Zo > 1.2816
Reject Ho if (x-504)/64/(n) < -1.2816 OR if (x-504)/64/(n) > 1.2816
Reject Ho if x < 504-82.022/(n) OR if x > 504-82.022/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 53 then the critical region
becomes,
Reject Ho if x < 504-82.022/(53) OR if x > 504+82.022/(53)
Reject Ho if x < 492.733 OR if x > 515.267
Implies, don't reject Ho if 492.733 x 515.267
Suppose the true mean is 498
Probability of Type II error,
P(Type II error) = P(Don't Reject Ho | H1 is true )
= P(492.733 x 515.267 | 1 = 498)
= P(492.733-498/64/(53) x - / /n 515.267-498/64/(53)
= P(-0.599 Z 1.964 )
= P( Z 1.964) - P( Z -0.599)
= 0.9752 - 0.2746 [ Using Z Table ]
= 0.701
For n =53 the probability of Type II error is 0.701
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.