Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Excel information Day Date Weekday Daily Demand Weekend 1 4/25/2016 Mon 297 0 2

ID: 3360193 • Letter: E

Question

Excel information

Day Date Weekday Daily Demand Weekend 1 4/25/2016 Mon 297 0 2 4/26/2016 Tue 293 0 3 4/27/2016 Wed 327 0 4 4/28/2016 Thu 315 0 5 4/29/2016 Fri 348 0 6 4/30/2016 Sat 447 1 7 5/1/2016 Sun 431 1 8 5/2/2016 Mon 283 0 9 5/3/2016 Tue 326 0 10 5/4/2016 Wed 317 0 11 5/5/2016 Thu 345 0 12 5/6/2016 Fri 355 0 13 5/7/2016 Sat 428 1 14 5/8/2016 Sun 454 1 15 5/9/2016 Mon 305 0 16 5/10/2016 Tue 310 0 17 5/11/2016 Wed 350 0 18 5/12/2016 Thu 308 0 19 5/13/2016 Fri 366 0 20 5/14/2016 Sat 460 1 21 5/15/2016 Sun 427 1 22 5/16/2016 Mon 291 0 23 5/17/2016 Tue 325 0 24 5/18/2016 Wed 354 0 25 5/19/2016 Thu 322 0 26 5/20/2016 Fri 405 0 27 5/21/2016 Sat 442 1 28 5/22/2016 Sun 454 1 29 5/23/2016 Mon 318 0 30 5/24/2016 Tue 298 0 31 5/25/2016 Wed 355 0 32 5/26/2016 Thu 355 0 33 5/27/2016 Fri 374 0 34 5/28/2016 Sat 447 1 35 5/29/2016 Sun 463 1 36 5/30/2016 Mon 291 0 37 5/31/2016 Tue 319 0 38 6/1/2016 Wed 333 0 39 6/2/2016 Thu 339 0 40 6/3/2016 Fri 416 0 41 6/4/2016 Sat 475 1 42 6/5/2016 Sun 459 1 43 6/6/2016 Mon 319 0 44 6/7/2016 Tue 326 0 45 6/8/2016 Wed 356 0 46 6/9/2016 Thu 340 0 47 6/10/2016 Fri 395 0 48 6/11/2016 Sat 465 1 49 6/12/2016 Sun 453 1 50 6/13/2016 Mon 307 0 51 6/14/2016 Tue 324 0 52 6/15/2016 Wed 350 0 53 6/16/2016 Thu 348 0 54 6/17/2016 Fri 384 0 55 6/18/2016 Sat 474 1 56 6/19/2016 Sun 485 1 Eli Orchid has designed a new pharmaceutical product, Orchid Relief, which improves the night sleep Before initiating mass production of the product, Eli Orchid has been market-testing Orchid Relief in Orange County over the past 8 weeks. The daily demand values are recorded in the Excel file provided Eli Orchid plans on using the sales data to predict sales for the upcoming week. An accurate forecast would be helpful in making arrangements for the company's production processes and designing promotions. The COO of the company approved the initial analysis and asked for the following extensions: To fit a new multiple regression model d = with dummy variables for weekdays (not the weekend), and to provide the Adjusted R2- regression equation (d = a*t + b + along with Adiusted R2 To use all three models: M1 M2 M3 M1: d = 1.0356t + 339.29 M2: d = 0.7163t + 116. 7679w + 315.02 | | Wed 62 M3: (the one considering weekdays) Mon Tue Thu Fri Sat. Sun to predict the demand for seven days ahead (Mon, Tue, ..., Sun) and find the total weekly demand Take advantage of the fact that newNew: M: 311 T: 341 W: 357 Th: 363 F: 390 Sa: 490 Su: 492 demand data became available and use this new data to compare the forecasts using MAPE for days 57-63. MAPEMB: To provide a line chart with the actual demand (including the new data) and M2 and M3 MAPEM1: MAPEM2: 1 Round numbers to four decimal points (e.g. 0.1234), unless explicitly requested otherwise

Explanation / Answer

Regression Statistics Multiple R 0.964726 R Square 0.930697 Adjusted R Square 0.901803 Standard Error 17.07076 Observations 56 ANOVA df SS MS F Significance F Regression 7 191759.7 27394.24 109.6732 2.6E-27 Residual 49 14279.13 291.4107 Total 56 206038.8 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 334 6.035424 55.33994 7.76E-46 321.8714 346.1286 t 119.25 8.535378 13.97126 1.03E-18 102.0975 136.4025 x1 -32.625 8.535378 -3.82233 0.000374 -49.7775 -15.4725 x2 -18.875 8.535378 -2.21138 0.031705 -36.0275 -1.72252 x3 8.75 8.535378 1.025145 0.310329 -8.40248 25.90248 x4 0 0 65535 #NUM! 0 0 x5 46.375 8.535378 5.433268 1.72E-06 29.22252 63.52748 x6 1.5 8.535378 0.175739 0.861223 -15.6525 18.65248 M1 M2 M3 Mon 339.29 431.7879 301.375 Tue 339.29 431.7879 315.125 Wed 339.29 431.7879 342.75 Thu 339.29 431.7879 334 Fri 339.29 431.7879 380.375 sat 340.3256 432.5042 454.75 Sun 340.3256 432.5042 453.25 Total 2377.101 3023.948 2581.625