Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The three blood banks in Franklin County are coordinated through a central offic

ID: 428480 • Letter: T

Question

The three blood banks in Franklin County are coordinated through a central office that facilitates blood delivery to four hospitals in the region. The cost to ship a standard container of blood from each bank to each hospital is shown in the table below. Also given are the biweekly number of containers available at each bank:

Bank 1 supply: 50

Bank 2 supply: 80

Bank 3 supply: 120

Further given are the biweekly number of containers of blood needed at each hospital:

Hospital 1 demand: 90

Hospital 2 demand: 70

Hospital 3 demand: 40

Hospital 4 demand: 50

Build an LP in Solver. Use the Simplex Method. How many shipments should be made biweekly from each bank to each hospital so that total shipment costs are minimized?

From/To Hospital 1 Hospital 2 Hospital 3 Hospital 4 Bank 1 8 9 11 16 Bank 2 12 7 5 8 Bank 3 14 10 6 7

Explanation / Answer

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

8

9

11

16

50

BANK 2

12

7

5

8

80

BANK 3

14

10

6

7

120

DEMAND

90

70

40

50

250

Northwest Corner Method

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

                  50               8

                    X                 9

                    X              11

                    X              16

50

BANK 2

                  40            12

                  40               7

                    X                 5

                    X                 8

80

BANK 3

                    X              14

                  30            10

                  40               6

                  50               7

120

DEMAND

90

70

40

50

250

Step 1: Bank 1 to Hospital 1: Supply is fully satisfied in this row and demand is reduced to 40.

Step 2: Bank 2 to Hospital 1: Demand is fully satisfied and supply in this row is reduced to 40.

Step 3: Bank 2 to Hospital 2: Supply is fully satisfied in this row and demand is reduced to 30.

Step 4: Bank 3 to Hospital 2: Demand is fully satisfied and supply in this row is reduced to 90.

Step 5: Bank 3 to Hospital 3: Demand is fully satisfied and supply in this row is reduced to 50.

Step 6: Bank 4 to Hospital 4: Demand and supply are satisfied.

Total Cost = {50 * 8} + {40 * 12} + {40 * 7} + {30 * 10} + {40 * 6} + {50 * 7} = $2,150

Minimum Cell Cost Method

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

                  50               8

                    X                 9

                    X              11

                    X              16

50

BANK 2

                    X              12

                  40               7

                  40               5

                    X                 8

80

BANK 3

                  40            14

                  30            10

                    X                 6

                  50               7

120

DEMAND

90

70

40

50

250

Step 1: Bank 2 to Hospital 3(Has lowest unit cost of $5): Demand is fully satisfied and supply in this row is reduced to 40.

Step 2: Bank 2 to Hospital 2: Supply is fully satisfied in this row and demand is reduced to 30.

Step 3: Bank 3 to Hospital 4: Supply in this row is reduced to 70 and demand is fully satisfied

Step 4: Bank 1 to Hospital 1: Supply is fully satisfied in this row and demand is reduced to 40.

Step 5: Bank 3 to Hospital 2: Demand is fully satisfied and supply in this row is reduced to 40.

Step 6: Bank 3 to Hospital 1: Demand and supply are satisfied.

Total Cost = {50 * 8} + {40 * 14} + {40 * 7} + {30 * 10} + {40 * 5} + {50 * 7} = $2,090

Vogel’s Approximation Method

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

Row Difference

BANK 1

            50         8

              X          9

              X       11

              X         16

50

BANK 2

            40       12

            40         7

              X         5

              X           8

80

BANK 3

              X        14

            30       10

            40        6

            50          7

120

DEMAND

90

70

40

50

250

Column Difference

Total Cost = {50 * 8} + {40 * 12} + {40 * 7} + {30 * 10} + {40 * 6} + {50 * 7} = $2,050

* Vogel’s Method requires taking the two least unit costs for each row and column. These two values will be subtracted from each other to obtain a difference. The maximum value a row/column may have from the difference will be the area to place a value. The cell with the least unit cost from the row/column chosen as having the maximum difference will be where the values will be inputted.

Stepping-Stone Method

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

                  50               8

                    X                 9

                    X              11

                    X              16

50

BANK 2

             40 (-)       12

              40(+)           7

                    X                 5

                    X                 8

80

BANK 3

                 X(+)           14

               30(-)         10

                  40               6

                  50               7

120

DEMAND

90

70

40

50

250

Improvement Index:    7 – 10 + 14 – 12 = -1 à improves solution

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

8

50

9

X

11

X

16

X

50

BANK 2

12

10

7

70

5

X

8

X

80

BANK 3

14

30

10

X

6

40

7

50

120

DEMAND

90

70

40

50

250

Total Cost = {50 * 8} + {40 * 12} + {30 * 14} + {70 * 7} + {40 * 6} + {50 * 7} = $2,020àOptimal

If we try a different path,

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

            50 (-)          8

                X(+)             9

                    X              11

                    X              16

50

BANK 2

            40 (+)      12

           40   (-)         7

                    X                 5

                    X                 8

80

BANK 3

                    X              14

                  30            10

                  40               6

                  50               7

120

DEMAND

90

70

40

50

250

Improvement Index: 9 – 7 + 12 – 8 = 6 à worsens solution

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

                  10               8

                  40               9

                    X              11

                    X              16

50

BANK 2

                  80            12

                    X                 7

                    X                 5

                    X                 8

80

BANK 3

                    X              14

                  30            10

                  40               6

                  50               7

120

DEMAND

90

70

40

50

250

Total Cost = {10 * 8} + {80 * 12} + {40 * 9} + {30 * 10} + {40 * 6} + {50 * 7} = $2,290

Another path could be,

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

                  50               8

                    X                 9

                    X              11

                    X              16

50

BANK 2

                  40            12

            40 (-)          7

                 X(+)              5

                    X                 8

80

BANK 3

X            14

            30 (+)       10

               40(-)            6

                  50               7

120

DEMAND

90

70

40

50

250

Improvement Index: 5 -6 + 10 – 7 = 2 à worsens solution

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

                  50               8

                    X                 9

                    X              11

                    X              16

50

BANK 2

                  40            12

                    X                 7

                  40               5

                    X                 8

80

BANK 3

                    X              14

                  70            10

                    X                 6

                  50               7

120

DEMAND

90

70

40

50

250

Total Cost = {50 * 8} + {40 * 12} + {70 * 10} + {40 * 5} + {50 * 7} = $2,130

TO

FROM

HOSPITAL

1

HOSPITAL

2

HOSPITAL

3

HOSPITAL

4

SUPPLY

BANK 1

8

9

11

16

50

BANK 2

12

7

5

8

80

BANK 3

14

10

6

7

120

DEMAND

90

70

40

50

250

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote